Production of relativistic electrons at subrelativistic laser intensities.

Relativistic electron temperatures were measured from kilojoule, subrelativistic laser-plasma interactions. Experiments show an order of magnitude higher temperatures than expected from a ponderomotive scaling, where temperatures of up to 2.2 MeV were generated using an intensity of 1×10^{18}W/cm^{2}. Two-dimensional particle-in-cell simulations suggest that electrons gain superponderomotive energies by stochastic acceleration as they sample a large area of rapidly changing laser phase. We demonstrate that such high temperatures are possible from subrelativistic intensities by using lasers with long pulse durations and large spatial scales.

[1]  V. J. Hernandez,et al.  High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility , 2017 .

[2]  A. E. Dangor,et al.  A study of picosecond lasersolid interactions up to 1019 W cm-2 , 1997 .

[3]  A. Sunahara,et al.  Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration , 2016 .

[4]  R Shepherd,et al.  Observations of the effect of ionization-potential depression in hot dense plasma. , 2013, Physical review letters.

[5]  Michael D. Perry,et al.  Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets , 2000 .

[6]  Stochastic acceleration by intense laser fields , 2002 .

[7]  K. R. Manes,et al.  Description of the NIF Laser , 2016 .

[8]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[9]  Zach DeVito,et al.  Opt , 2017 .

[10]  Zheng-Ming Sheng,et al.  Particle acceleration in relativistic laser channels , 1999 .

[11]  M. Desjarlais Practical Improvements to the Lee‐More Conductivity Near the Metal‐Insulator Transition , 1999 .

[12]  Tabak,et al.  Absorption of ultra-intense laser pulses. , 1992, Physical review letters.

[13]  Stefano Atzeni,et al.  Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition , 2008 .

[14]  R. More,et al.  An electron conductivity model for dense plasmas , 1984 .

[15]  Gilbert W. Collins,et al.  Thermal conductivity measurements of proton-heated warm dense aluminum , 2017, Scientific Reports.

[16]  S. V. Bulanov,et al.  Boosting laser-ion acceleration with multi-picosecond pulses , 2017, Scientific Reports.

[17]  L. Divol,et al.  Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma. , 2012, Physical review letters.

[18]  Jeffrey A. Koch,et al.  Characteristics of high energy Kα and Bremsstrahlung sources generated by short pulse petawatt lasers , 2004 .

[19]  Hui Chen,et al.  High performance compact magnetic spectrometers for energetic ion and electron measurement in ultraintense short pulse laser solid interactions. , 2008, The Review of scientific instruments.

[20]  Yong Wang,et al.  Relativistic plasma nanophotonics for ultrahigh energy density physics , 2013, Nature Photonics.

[21]  M G Haines,et al.  Numerical modeling of fast electron generation in the presence of preformed plasma in laser-matter interaction at relativistic intensities. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[23]  Jonathan D. Zuegel,et al.  High-energy petawatt capability for the omega laser , 2005 .

[24]  Hui Chen,et al.  Relativistic positron creation using ultraintense short pulse lasers. , 2008, Physical review letters.

[25]  J. Moody,et al.  Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses. , 2017, Physical review letters.

[26]  G. D. Valdez,et al.  ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0 , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[27]  R. Freeman,et al.  On the origin of super-hot electrons from intense laser interactions with solid targets having moderate scale length preformed plasmas , 2013, 1311.0910.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  P. Audebert,et al.  Laser-driven proton scaling laws and new paths towards energy increase , 2006 .

[30]  S. Wilks,et al.  Absorption of short laser pulses on solid targets in the ultrarelativistic regime. , 2008, Physical review letters.

[31]  A. Sunahara,et al.  Ultrahigh-contrast kilojoule-class petawatt LFEX laser using a plasma mirror , 2016 .

[32]  D. K. Bradley,et al.  Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility , 2017 .

[33]  Pukhov,et al.  Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. , 1996, Physical review letters.

[34]  Z. Sheng,et al.  Stochastic heating and acceleration of electrons by high-intensity lasers in inhomogeneous plasmas , 2008 .

[35]  W. Kruer,et al.  J×B heating by very intense laser light , 1985 .

[36]  A. J. Kemp,et al.  Computational modeling of proton acceleration with multi-picosecond and high energy, kilojoule, lasers , 2018, Physics of Plasmas.

[37]  R. Freeman,et al.  Effects of target charging and ion emission on the energy spectrum of emitted electrons , 2011 .

[38]  D. Welch,et al.  Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls , 2017 .

[39]  L. Sérani,et al.  Development of the PETawatt Aquitaine Laser system and new perspectives in physics , 2014 .

[40]  R. Stephens,et al.  Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP , 2017 .

[41]  N. M. H. Butler,et al.  Escaping electrons from intense laser-solid interactions as a function of laser spot size , 2018 .

[42]  A. Arefiev,et al.  Generation of Superponderomotive Electrons in Multipicosecond Interactions of Kilojoule Laser Beams with Solid-Density Plasmas. , 2016, Physical review letters.

[43]  Andrew G. Glen,et al.  APPL , 2001 .

[44]  P. Norreys,et al.  High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets , 2017 .

[45]  B. Pollock,et al.  Target material dependence of positron generation from high intensity laser-matter interactions , 2016 .

[46]  S. Krasheninnikov,et al.  Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser–matter interaction at relativistic intensities , 2015, 1512.02411.

[47]  D. Meyerhofer,et al.  Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  D. Neely,et al.  Generating "superponderomotive" electrons due to a non-wake-field interaction between a laser pulse and a longitudinal electric field. , 2013, Physical review letters.

[49]  D. Meyerhofer,et al.  Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications. , 2015, Physical review letters.

[50]  S. G. Bochkarev,et al.  Stochastic electron acceleration in plasma waves driven by a high-power subpicosecond laser pulse , 2014 .

[51]  T. Arber,et al.  Rapid filamentation of high power lasers at the quarter critical surface , 2012 .

[52]  J. Mcnaney,et al.  Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers , 2012 .

[53]  P. J. Wegner,et al.  The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[54]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.