The Type Icn SN 2021csp: Implications for the Origins of the Fastest Supernovae and the Fates of Wolf–Rayet Stars

We present observations of SN 2021csp, the second example of a newly identified type of supernova (SN) hallmarked by strong, narrow, P Cygni carbon features at early times (Type Icn). The SN appears as a fast and luminous blue transient at early times, reaching a peak absolute magnitude of −20 within 3 days due to strong interaction between fast SN ejecta (v ≈ 30,000 km s−1) and a massive, dense, fast-moving C/O wind shed by the WC-like progenitor months before explosion. The narrow-line features disappear from the spectrum 10–20 days after explosion and are replaced by a blue continuum dominated by broad Fe features, reminiscent of Type Ibn and IIn supernovae and indicative of weaker interaction with more extended H/He-poor material. The transient then abruptly fades ∼60 days post-explosion when interaction ceases. Deep limits at later phases suggest minimal heavy-element nucleosynthesis, a low ejecta mass, or both, and imply an origin distinct from that of classical Type Ic SNe. We place SN 2021csp in context with other fast-evolving interacting transients, and discuss various progenitor scenarios: an ultrastripped progenitor star, a pulsational pair-instability eruption, or a jet-driven fallback SN from a Wolf–Rayet (W-R) star. The fallback scenario would naturally explain the similarity between these events and radio-loud fast transients, and suggests a picture in which most stars massive enough to undergo a W-R phase collapse directly to black holes at the end of their lives.

[1]  Berkeley,et al.  A WC/WO star exploding within an expanding carbon–oxygen–neon nebula , 2021, Nature.

[2]  A. Dotter,et al.  Revisiting the explodability of single massive star progenitors of stripped-envelope supernovae , 2021, Astronomy & Astrophysics.

[3]  M. Graham,et al.  Real-time discovery of AT2020xnd: A Fast, Luminous Ultraviolet Transient with minimal radioactive ejecta , 2021, Monthly Notices of the Royal Astronomical Society.

[4]  David O. Jones,et al.  A cool and inflated progenitor candidate for the Type Ib supernova 2019yvr at 2.6 yr before explosion , 2021, Monthly Notices of the Royal Astronomical Society.

[5]  J. Neill,et al.  Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae , 2020, The Astrophysical Journal.

[6]  M. Drout,et al.  The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources , 2020, The Astrophysical Journal.

[7]  Adam A. Miller,et al.  The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics , 2020, The Astrophysical Journal.

[8]  A. Mahabal,et al.  A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion , 2020, The Astrophysical Journal.

[9]  J. Neill,et al.  The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae , 2020, The Astrophysical Journal Supplement Series.

[10]  D. A. Kann,et al.  The Exotic Type Ic Broad-lined Supernova SN 2018gep: Blurring the Line between Supernovae and Fast Optical Transients , 2020, The Astrophysical Journal.

[11]  M. Graham,et al.  A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi , 2020, The Astrophysical Journal.

[12]  Adam A. Miller,et al.  SN2019dge: A Helium-rich Ultra-stripped Envelope Supernova , 2020, The Astrophysical Journal.

[13]  J. Prieto,et al.  Studying the environment of AT 2018cow with MUSE , 2020, 2005.02412.

[14]  Coo,et al.  SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart , 2020, The Astrophysical Journal.

[15]  Adam A. Miller,et al.  The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses , 2020, The Astrophysical Journal.

[16]  D. Kushnir,et al.  The γ-ray deposition histories of core-collapse supernovae , 2020, Monthly Notices of the Royal Astronomical Society.

[17]  I. Chilingarian,et al.  A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy , 2020, The Astrophysical Journal.

[18]  Ipac,et al.  The Koala: A Fast Blue Optical Transient with Luminous Radio Emission from a Starburst Dwarf Galaxy at z = 0.27 , 2020, The Astrophysical Journal.

[19]  E. Berger,et al.  The Pre-explosion Mass Distribution of Hydrogen-poor Superluminous Supernova Progenitors and New Evidence for a Mass–Spin Correlation , 2020, The Astrophysical Journal.

[20]  Steward Observatory,et al.  PypeIt: The Python Spectroscopic Data Reduction Pipeline , 2019, J. Open Source Softw..

[21]  A. Mahabal,et al.  The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs , 2019, The Astrophysical Journal.

[22]  M. Graham,et al.  The luminous and rapidly evolving SN 2018bcc , 2019, 1910.06016.

[23]  K. Maguire,et al.  SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf , 2019, The Astrophysical Journal.

[24]  Cosimo Inserra,et al.  Observational properties of extreme supernovae , 2019, Nature Astronomy.

[25]  Umaa Rebbapragada,et al.  Real-bogus classification for the Zwicky Transient Facility using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[26]  J. Anderson,et al.  A meta-analysis of core-collapse supernova56Ni masses , 2019, Astronomy & Astrophysics.

[27]  Richard Walters,et al.  The Zwicky Transient Facility: Surveys and Scheduler , 2019, Publications of the Astronomical Society of the Pacific.

[28]  M. Graham,et al.  Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient , 2019, The Astrophysical Journal.

[29]  P. Brown,et al.  The Young and Nearby Normal Type Ia Supernova 2018gv: UV-optical Observations and the Earliest Spectropolarimetry , 2019, The Astrophysical Journal.

[30]  D. Perley Fully Automated Reduction of Longslit Spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory , 2019, Publications of the Astronomical Society of the Pacific.

[31]  O. Fox,et al.  Signatures of circumstellar interaction in the unusual transient AT 2018cow , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[33]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[34]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[35]  K. Nomoto,et al.  Pulsational Pair-instability Supernovae. I. Pre-collapse Evolution and Pulsational Mass Ejection , 2019, The Astrophysical Journal.

[36]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[37]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[38]  Matthew J. Graham,et al.  The Zwicky Transient Facility Alert Distribution System , 2018, Publications of the Astronomical Society of the Pacific.

[39]  J. Sollerman,et al.  Type Ic supernovae from the (intermediate) Palomar Transient Factory , 2018, Astronomy & Astrophysics.

[40]  E. Phinney,et al.  AT2018cow: A Luminous Millimeter Transient , 2018, The Astrophysical Journal.

[41]  C. Guidorzi,et al.  An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients , 2018, The Astrophysical Journal.

[42]  E. Ofek,et al.  A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary , 2018, Science.

[43]  D. Kasen,et al.  Helium giant stars as progenitors of rapidly fading Type Ibc supernovae , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[44]  A. Pastorello,et al.  SN 2017ens: The Metamorphosis of a Luminous Broadlined Type Ic Supernova into an SN IIn , 2018, The Astrophysical Journal.

[45]  William H. Lee,et al.  The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  A. Rest,et al.  A potential progenitor for the Type Ic supernova 2017ein , 2018, Monthly Notices of the Royal Astronomical Society.

[47]  A. Sander,et al.  The Galactic WC and WO stars , 2018, Astronomy & Astrophysics.

[48]  Matthew J. Matuszewski,et al.  iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy , 2018, The Astrophysical Journal.

[49]  U. N. Dame,et al.  A fast-evolving luminous transient discovered by K2/Kepler , 2018, 1804.04641.

[50]  N. E. Sommer,et al.  Rapidly evolving transients in the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[51]  Wei Zheng,et al.  SN 2017ein and the Possible First Identification of a Type Ic Supernova Progenitor , 2018, The Astrophysical Journal.

[52]  D. Kasen,et al.  Models of bright nickel-free supernovae from stripped massive stars with circumstellar shells , 2018, 1801.01943.

[53]  J. Maund The very young resolved stellar populations around stripped-envelope supernovae , 2017, 1712.07714.

[54]  N. Smith Luminous blue variables and the fates of very massive stars , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  Richard Walters,et al.  The SED Machine: A Robotic Spectrograph for Fast Transient Classification , 2017, 1710.02917.

[56]  P. Vreeswijk,et al.  iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova , 2017, 1706.05018.

[57]  E. Pian,et al.  Relativistic Jets in Core-collapse Supernovae , 2017, The Astrophysical Journal.

[58]  William H. Lee,et al.  Confined dense circumstellar material surrounding a regular type II supernova , 2017, Nature Physics.

[59]  A. Gal-yam Observational and Physical Classification of Supernovae , 2016, 1611.09353.

[60]  A. Cikota,et al.  Linear spectropolarimetry of polarimetric standard stars with VLT/FORS2 , 2016, 1610.00722.

[61]  B. Winkel,et al.  HI4PI: a full-sky H i survey based on EBHIS and GASS , 2016, 1610.06175.

[62]  Benjamin D. Johnson,et al.  Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.

[63]  S. Woosley Pulsational Pair-instability Supernovae , 2016, 1608.08939.

[64]  K. Maguire,et al.  LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES , 2016, 1608.02994.

[65]  P. E. Nugent,et al.  PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806 , 2016, 1606.03074.

[66]  J. Maund,et al.  The disappearance of the helium-giant progenitor of the Type Ib supernova iPTF13bvn and constraints on its companion , 2016, 1604.05050.

[67]  A. Hopkins,et al.  Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using lambdar , 2016 .

[68]  Eric Burns,et al.  THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS , 2016, 1603.07612.

[69]  D. Lang,et al.  FULL-DEPTH COADDS OF THE WISE AND FIRST-YEAR NEOWISE-REACTIVATION IMAGES , 2016, 1603.05664.

[70]  U. M. Noebauer,et al.  Massive stars exploding in a He-rich circumstellar medium - VII. The metamorphosis of ASASSN-15ed from a narrow line Type Ibn to a normal Type Ib Supernova , 2015, 1509.09062.

[71]  S. Smartt Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.

[72]  K. Maguire,et al.  On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.

[73]  R. Kotak,et al.  Massive stars exploding in a He-rich circumstellar medium. IV. Transitional Type Ibn Supernovae , 2015, 1502.04946.

[74]  P. Crowther,et al.  Spatial distribution of Galactic Wolf-Rayet stars and implications for the global population , 2014, 1412.0699.

[75]  G. Anupama,et al.  Optical observations of the fast declining Type Ib supernova iPTF13bvn , 2014, 1409.2739.

[76]  Iain A. Steele,et al.  SPRAT: Spectrograph for the Rapid Acquisition of Transients , 2014, Astronomical Telescopes and Instrumentation.

[77]  Christopher Bebek,et al.  The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.

[78]  S. Woosley,et al.  The Deaths of Very Massive Stars , 2014, 1406.5657.

[79]  David Bersier,et al.  Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae , 2014, 1406.3667.

[80]  D. Lang unWISE: UNBLURRED COADDS OF THE WISE IMAGING , 2014, 1405.0308.

[81]  N. Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.

[82]  O. Schnurr,et al.  The Wolf-Rayet stars in the Large Magellanic Cloud - A comprehensive analysis of the WN class , 2014, 1401.5474.

[83]  J. Prieto,et al.  SN 2009ip and SN 2010mc: core-collapse Type IIn supernovae arising from blue supergiants , 2013, 1308.0112.

[84]  L. Galbany,et al.  The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T e-based literature data , 2013, 1307.5316.

[85]  Kelsey I. Clubb,et al.  The Unprecedented Third Outburst of SN 2009ip: A Luminous Blue Variable Becomes a Supernova , 2012, 1209.6320.

[86]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[87]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[88]  L. Dessart,et al.  Non‐thermal excitation and ionization in supernovae , 2012, 1206.0215.

[89]  S. Woosley,et al.  On the nature of supernovae Ib and Ic , 2012, 1205.5349.

[90]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[91]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[92]  I. A. Steele,et al.  A fully automated data reduction pipeline for the FRODOSpec integral field spectrograph , 2011, 1112.2574.

[93]  N. Suntzeff,et al.  THE ULTIMATE LIGHT CURVE OF SN 1998bw/GRB 980425 , 2011, 1106.1695.

[94]  M. Fukugita,et al.  Supernovae in the Subaru Deep Field: the rate and delay-time distribution of Type Ia supernovae out to redshift 2 , 2011, 1102.0005.

[95]  K. Maguire,et al.  SN 2009md: another faint supernova from a low-mass progenitor , 2010, 1011.6558.

[96]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[97]  Ryan Chornock,et al.  Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.

[98]  D. Maoz,et al.  The supernova rate and delay time distribution in the Magellanic Clouds , 2010, 1003.3031.

[99]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[100]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[101]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[102]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[103]  N. Chugai Circumstellar interaction in type Ibn supernovae and SN 2006jc , 2009, 0908.0568.

[104]  A. Gal-yam,et al.  A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.

[105]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[106]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.

[107]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[108]  R. Kotak,et al.  Massive stars exploding in a He-rich circumstellar medium – III. SN 2006jc: infrared echoes from new and old dust in the progenitor CSM , 2008, 0803.2145.

[109]  E. Ofek,et al.  Massive stars exploding in a He-rich circumstellar medium. I. Type Ibn (SN 2006jc-like) events , 2008, 0801.2277.

[110]  N. Langer,et al.  Pair creation supernovae at low and high redshift , 2007, 0708.1970.

[111]  J. Maund,et al.  Spectropolarimetry of the Type Ib/c SN 2005bf , 2007, 0707.2237.

[112]  R. Foley,et al.  Dust Formation and He II λ4686 Emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc , 2007, 0704.2249.

[113]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[114]  A. Pastorello,et al.  A giant outburst two years before the core-collapse of a massive star , 2007, Nature.

[115]  Mohan Ganeshalingam,et al.  SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.

[116]  P. Crowther,et al.  Physical Properties of Wolf-Rayet Stars , 2006, astro-ph/0610356.

[117]  Marco Bonati,et al.  The Automated Palomar 60 Inch Telescope , 2006, astro-ph/0608323.

[118]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[119]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[120]  Martino Romaniello,et al.  Error Analysis for Dual‐Beam Optical Linear Polarimetry , 2005, astro-ph/0509153.

[121]  Gustavo A. Medrano-Cerda,et al.  The Liverpool Telescope: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[122]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[123]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[124]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[125]  M. Turatto,et al.  Peculiar, low-luminosity Type II supernovae: low-energy explosions in massive progenitors? , 2002, astro-ph/0210171.

[126]  M. Hamuy Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.

[127]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[128]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[129]  Filippo Frontera,et al.  Accepted for publication in the Astrophysical Journal 2001, v. 555 Preprint typeset using L ATEX style emulateapj v. 14/09/00 THE METAMORPHOSIS OF SN 1998BW ‡ , 1999 .

[130]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[131]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[132]  S. E. Woosley,et al.  Supernovae, Jets, and Collapsars , 1999, astro-ph/9910034.

[133]  D. Frail,et al.  SN 1998bw: The case for a relativistic shock , 1999, astro-ph/9906070.

[134]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[135]  D. Frail,et al.  Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998 , 1998, Nature.

[136]  Lee D. Feinberg,et al.  The Space Telescope Imaging Spectrograph Design , 1998 .

[137]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[138]  J. Wheeler,et al.  On the Light Curves of Stripped-Envelope Supernovae , 1997 .

[139]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[140]  Lifan Wang,et al.  Polarimetry of the Type Ia Supernova SN 1996X , 1996, astro-ph/9609178.

[141]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[142]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[143]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[144]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[145]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[146]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[147]  James E. Gunn,et al.  AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .

[148]  Linda J. Smith,et al.  Mass-loss rates for 21 Wolf-rayet stars. , 1981 .

[149]  D. S. Mathewson,et al.  Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .

[150]  G. Gamow On WC and WN Stars. , 1943 .

[151]  J. Robert A VERY LOW MASS OF 56Ni IN THE EJECTA OF SN 1994W , 1998 .

[152]  Chien Y. Peng,et al.  UBVRI Photometry of the Type IC SN 1994I in M51 , 1996 .