The Type Icn SN 2021csp: Implications for the Origins of the Fastest Supernovae and the Fates of Wolf–Rayet Stars
暂无分享,去创建一个
J. Sollerman | J. Maund | D. Perley | Wei Zheng | I. Andreoni | M. Coughlin | N. Strotjohann | M. Kasliwal | E. Bellm | S. Schulze | A. Gal-yam | A. Filippenko | R. Dekany | R. Lunnan | C. Fremling | F. Masci | A. Cikota | R. Riddle | D. Shupe | P. Hoeflich | Yuhan Yao | A. Ho | I. Irani | Yi Yang | P. Rosnet | D. Baade | T. Brink | M. Medford | Ting-Wan Chen | A. Dahiwale | A. Tzanidakis | E. Kool | S. Kulkarni | D. Duev | Lin Yan | A. Filippenko | S. Kulkarni
[1] Berkeley,et al. A WC/WO star exploding within an expanding carbon–oxygen–neon nebula , 2021, Nature.
[2] A. Dotter,et al. Revisiting the explodability of single massive star progenitors of stripped-envelope supernovae , 2021, Astronomy & Astrophysics.
[3] M. Graham,et al. Real-time discovery of AT2020xnd: A Fast, Luminous Ultraviolet Transient with minimal radioactive ejecta , 2021, Monthly Notices of the Royal Astronomical Society.
[4] David O. Jones,et al. A cool and inflated progenitor candidate for the Type Ib supernova 2019yvr at 2.6 yr before explosion , 2021, Monthly Notices of the Royal Astronomical Society.
[5] J. Neill,et al. Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae , 2020, The Astrophysical Journal.
[6] M. Drout,et al. The Nickel Mass Distribution of Stripped-envelope Supernovae: Implications for Additional Power Sources , 2020, The Astrophysical Journal.
[7] Adam A. Miller,et al. The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics , 2020, The Astrophysical Journal.
[8] A. Mahabal,et al. A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion , 2020, The Astrophysical Journal.
[9] J. Neill,et al. The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae , 2020, The Astrophysical Journal Supplement Series.
[10] D. A. Kann,et al. The Exotic Type Ic Broad-lined Supernova SN 2018gep: Blurring the Line between Supernovae and Fast Optical Transients , 2020, The Astrophysical Journal.
[11] M. Graham,et al. A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi , 2020, The Astrophysical Journal.
[12] Adam A. Miller,et al. SN2019dge: A Helium-rich Ultra-stripped Envelope Supernova , 2020, The Astrophysical Journal.
[13] J. Prieto,et al. Studying the environment of AT 2018cow with MUSE , 2020, 2005.02412.
[14] Coo,et al. SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart , 2020, The Astrophysical Journal.
[15] Adam A. Miller,et al. The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses , 2020, The Astrophysical Journal.
[16] D. Kushnir,et al. The γ-ray deposition histories of core-collapse supernovae , 2020, Monthly Notices of the Royal Astronomical Society.
[17] I. Chilingarian,et al. A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy , 2020, The Astrophysical Journal.
[18] Ipac,et al. The Koala: A Fast Blue Optical Transient with Luminous Radio Emission from a Starburst Dwarf Galaxy at z = 0.27 , 2020, The Astrophysical Journal.
[19] E. Berger,et al. The Pre-explosion Mass Distribution of Hydrogen-poor Superluminous Supernova Progenitors and New Evidence for a Mass–Spin Correlation , 2020, The Astrophysical Journal.
[20] Steward Observatory,et al. PypeIt: The Python Spectroscopic Data Reduction Pipeline , 2019, J. Open Source Softw..
[21] A. Mahabal,et al. The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs , 2019, The Astrophysical Journal.
[22] M. Graham,et al. The luminous and rapidly evolving SN 2018bcc , 2019, 1910.06016.
[23] K. Maguire,et al. SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf , 2019, The Astrophysical Journal.
[24] Cosimo Inserra,et al. Observational properties of extreme supernovae , 2019, Nature Astronomy.
[25] Umaa Rebbapragada,et al. Real-bogus classification for the Zwicky Transient Facility using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.
[26] J. Anderson,et al. A meta-analysis of core-collapse supernova56Ni masses , 2019, Astronomy & Astrophysics.
[27] Richard Walters,et al. The Zwicky Transient Facility: Surveys and Scheduler , 2019, Publications of the Astronomical Society of the Pacific.
[28] M. Graham,et al. Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient , 2019, The Astrophysical Journal.
[29] P. Brown,et al. The Young and Nearby Normal Type Ia Supernova 2018gv: UV-optical Observations and the Earliest Spectropolarimetry , 2019, The Astrophysical Journal.
[30] D. Perley. Fully Automated Reduction of Longslit Spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory , 2019, Publications of the Astronomical Society of the Pacific.
[31] O. Fox,et al. Signatures of circumstellar interaction in the unusual transient AT 2018cow , 2019, Monthly Notices of the Royal Astronomical Society.
[32] Umaa Rebbapragada,et al. The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.
[33] R. Itoh,et al. The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.
[34] Umaa Rebbapragada,et al. Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.
[35] K. Nomoto,et al. Pulsational Pair-instability Supernovae. I. Pre-collapse Evolution and Pulsational Mass Ejection , 2019, The Astrophysical Journal.
[36] Umaa Rebbapragada,et al. The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.
[37] Umaa Rebbapragada,et al. The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.
[38] Matthew J. Graham,et al. The Zwicky Transient Facility Alert Distribution System , 2018, Publications of the Astronomical Society of the Pacific.
[39] J. Sollerman,et al. Type Ic supernovae from the (intermediate) Palomar Transient Factory , 2018, Astronomy & Astrophysics.
[40] E. Phinney,et al. AT2018cow: A Luminous Millimeter Transient , 2018, The Astrophysical Journal.
[41] C. Guidorzi,et al. An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients , 2018, The Astrophysical Journal.
[42] E. Ofek,et al. A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary , 2018, Science.
[43] D. Kasen,et al. Helium giant stars as progenitors of rapidly fading Type Ibc supernovae , 2018, Monthly Notices of the Royal Astronomical Society: Letters.
[44] A. Pastorello,et al. SN 2017ens: The Metamorphosis of a Luminous Broadlined Type Ic Supernova into an SN IIn , 2018, The Astrophysical Journal.
[45] William H. Lee,et al. The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? , 2018, Monthly Notices of the Royal Astronomical Society.
[46] A. Rest,et al. A potential progenitor for the Type Ic supernova 2017ein , 2018, Monthly Notices of the Royal Astronomical Society.
[47] A. Sander,et al. The Galactic WC and WO stars , 2018, Astronomy & Astrophysics.
[48] Matthew J. Matuszewski,et al. iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy , 2018, The Astrophysical Journal.
[49] U. N. Dame,et al. A fast-evolving luminous transient discovered by K2/Kepler , 2018, 1804.04641.
[50] N. E. Sommer,et al. Rapidly evolving transients in the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.
[51] Wei Zheng,et al. SN 2017ein and the Possible First Identification of a Type Ic Supernova Progenitor , 2018, The Astrophysical Journal.
[52] D. Kasen,et al. Models of bright nickel-free supernovae from stripped massive stars with circumstellar shells , 2018, 1801.01943.
[53] J. Maund. The very young resolved stellar populations around stripped-envelope supernovae , 2017, 1712.07714.
[54] N. Smith. Luminous blue variables and the fates of very massive stars , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[55] Richard Walters,et al. The SED Machine: A Robotic Spectrograph for Fast Transient Classification , 2017, 1710.02917.
[56] P. Vreeswijk,et al. iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova , 2017, 1706.05018.
[57] E. Pian,et al. Relativistic Jets in Core-collapse Supernovae , 2017, The Astrophysical Journal.
[58] William H. Lee,et al. Confined dense circumstellar material surrounding a regular type II supernova , 2017, Nature Physics.
[59] A. Gal-yam. Observational and Physical Classification of Supernovae , 2016, 1611.09353.
[60] A. Cikota,et al. Linear spectropolarimetry of polarimetric standard stars with VLT/FORS2 , 2016, 1610.00722.
[61] B. Winkel,et al. HI4PI: a full-sky H i survey based on EBHIS and GASS , 2016, 1610.06175.
[62] Benjamin D. Johnson,et al. Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.
[63] S. Woosley. Pulsational Pair-instability Supernovae , 2016, 1608.08939.
[64] K. Maguire,et al. LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES , 2016, 1608.02994.
[65] P. E. Nugent,et al. PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806 , 2016, 1606.03074.
[66] J. Maund,et al. The disappearance of the helium-giant progenitor of the Type Ib supernova iPTF13bvn and constraints on its companion , 2016, 1604.05050.
[67] A. Hopkins,et al. Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using lambdar , 2016 .
[68] Eric Burns,et al. THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS , 2016, 1603.07612.
[69] D. Lang,et al. FULL-DEPTH COADDS OF THE WISE AND FIRST-YEAR NEOWISE-REACTIVATION IMAGES , 2016, 1603.05664.
[70] U. M. Noebauer,et al. Massive stars exploding in a He-rich circumstellar medium - VII. The metamorphosis of ASASSN-15ed from a narrow line Type Ibn to a normal Type Ib Supernova , 2015, 1509.09062.
[71] S. Smartt. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.
[72] K. Maguire,et al. On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.
[73] R. Kotak,et al. Massive stars exploding in a He-rich circumstellar medium. IV. Transitional Type Ibn Supernovae , 2015, 1502.04946.
[74] P. Crowther,et al. Spatial distribution of Galactic Wolf-Rayet stars and implications for the global population , 2014, 1412.0699.
[75] G. Anupama,et al. Optical observations of the fast declining Type Ib supernova iPTF13bvn , 2014, 1409.2739.
[76] Iain A. Steele,et al. SPRAT: Spectrograph for the Rapid Acquisition of Transients , 2014, Astronomical Telescopes and Instrumentation.
[77] Christopher Bebek,et al. The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.
[78] S. Woosley,et al. The Deaths of Very Massive Stars , 2014, 1406.5657.
[79] David Bersier,et al. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae , 2014, 1406.3667.
[80] D. Lang. unWISE: UNBLURRED COADDS OF THE WISE IMAGING , 2014, 1405.0308.
[81] N. Smith. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.
[82] O. Schnurr,et al. The Wolf-Rayet stars in the Large Magellanic Cloud - A comprehensive analysis of the WN class , 2014, 1401.5474.
[83] J. Prieto,et al. SN 2009ip and SN 2010mc: core-collapse Type IIn supernovae arising from blue supergiants , 2013, 1308.0112.
[84] L. Galbany,et al. The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T e-based literature data , 2013, 1307.5316.
[85] Kelsey I. Clubb,et al. The Unprecedented Third Outburst of SN 2009ip: A Luminous Blue Variable Becomes a Supernova , 2012, 1209.6320.
[86] W. M. Wood-Vasey,et al. THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.
[87] C. Evans,et al. Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.
[88] L. Dessart,et al. Non‐thermal excitation and ionization in supernovae , 2012, 1206.0215.
[89] S. Woosley,et al. On the nature of supernovae Ib and Ic , 2012, 1205.5349.
[90] A. Gal-yam,et al. WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.
[91] L. Ho,et al. Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.
[92] I. A. Steele,et al. A fully automated data reduction pipeline for the FRODOSpec integral field spectrograph , 2011, 1112.2574.
[93] N. Suntzeff,et al. THE ULTIMATE LIGHT CURVE OF SN 1998bw/GRB 980425 , 2011, 1106.1695.
[94] M. Fukugita,et al. Supernovae in the Subaru Deep Field: the rate and delay-time distribution of Type Ia supernovae out to redshift 2 , 2011, 1102.0005.
[95] K. Maguire,et al. SN 2009md: another faint supernova from a low-mass progenitor , 2010, 1011.6558.
[96] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[97] Ryan Chornock,et al. Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.
[98] D. Maoz,et al. The supernova rate and delay time distribution in the Magellanic Clouds , 2010, 1003.3031.
[99] Chien Y. Peng,et al. DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.
[100] M. Sullivan,et al. Supernova 2007bi as a pair-instability explosion , 2009, Nature.
[101] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[102] Stephen J. Smartt,et al. Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.
[103] N. Chugai. Circumstellar interaction in type Ibn supernovae and SN 2006jc , 2009, 0908.0568.
[104] A. Gal-yam,et al. A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.
[105] J. P. Osborne,et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.
[106] Copenhagen,et al. The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.
[107] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[108] R. Kotak,et al. Massive stars exploding in a He-rich circumstellar medium – III. SN 2006jc: infrared echoes from new and old dust in the progenitor CSM , 2008, 0803.2145.
[109] E. Ofek,et al. Massive stars exploding in a He-rich circumstellar medium. I. Type Ibn (SN 2006jc-like) events , 2008, 0801.2277.
[110] N. Langer,et al. Pair creation supernovae at low and high redshift , 2007, 0708.1970.
[111] J. Maund,et al. Spectropolarimetry of the Type Ib/c SN 2005bf , 2007, 0707.2237.
[112] R. Foley,et al. Dust Formation and He II λ4686 Emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc , 2007, 0704.2249.
[113] J. P. Osborne,et al. An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.
[114] A. Pastorello,et al. A giant outburst two years before the core-collapse of a massive star , 2007, Nature.
[115] Mohan Ganeshalingam,et al. SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.
[116] P. Crowther,et al. Physical Properties of Wolf-Rayet Stars , 2006, astro-ph/0610356.
[117] Marco Bonati,et al. The Automated Palomar 60 Inch Telescope , 2006, astro-ph/0608323.
[118] D. Fox,et al. On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.
[119] M. Irwin,et al. The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.
[120] Martino Romaniello,et al. Error Analysis for Dual‐Beam Optical Linear Polarimetry , 2005, astro-ph/0509153.
[121] Gustavo A. Medrano-Cerda,et al. The Liverpool Telescope: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.
[122] Alan A. Wells,et al. The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.
[123] I. Hook,et al. The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .
[124] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[125] M. Turatto,et al. Peculiar, low-luminosity Type II supernovae: low-energy explosions in massive progenitors? , 2002, astro-ph/0210171.
[126] M. Hamuy. Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.
[127] L. Ho,et al. Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.
[128] Peter W. A. Roming,et al. The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.
[129] Filippo Frontera,et al. Accepted for publication in the Astrophysical Journal 2001, v. 555 Preprint typeset using L ATEX style emulateapj v. 14/09/00 THE METAMORPHOSIS OF SN 1998BW ‡ , 1999 .
[130] London,et al. Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.
[131] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[132] S. E. Woosley,et al. Supernovae, Jets, and Collapsars , 1999, astro-ph/9910034.
[133] D. Frail,et al. SN 1998bw: The case for a relativistic shock , 1999, astro-ph/9906070.
[134] D. Watson,et al. The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.
[135] D. Frail,et al. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998 , 1998, Nature.
[136] Lee D. Feinberg,et al. The Space Telescope Imaging Spectrograph Design , 1998 .
[137] Edward L. Fitzpatrick,et al. Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.
[138] J. Wheeler,et al. On the Light Curves of Stripped-Envelope Supernovae , 1997 .
[139] Alexei V. Filippenko,et al. Optical spectra of supernovae , 1997 .
[140] Lifan Wang,et al. Polarimetry of the Type Ia Supernova SN 1996X , 1996, astro-ph/9609178.
[141] Molefe Mokoene,et al. The Messenger , 1995, Outrageous Fortune.
[142] Harland W. Epps,et al. THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .
[143] S. Woosley. Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .
[144] Doug Tody,et al. The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.
[145] J. B. Oke,et al. Secondary standard stars for absolute spectrophotometry , 1983 .
[146] A. V. Filippenko,et al. THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .
[147] James E. Gunn,et al. AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .
[148] Linda J. Smith,et al. Mass-loss rates for 21 Wolf-rayet stars. , 1981 .
[149] D. S. Mathewson,et al. Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .
[150] G. Gamow. On WC and WN Stars. , 1943 .
[151] J. Robert. A VERY LOW MASS OF 56Ni IN THE EJECTA OF SN 1994W , 1998 .
[152] Chien Y. Peng,et al. UBVRI Photometry of the Type IC SN 1994I in M51 , 1996 .