Numerical simulation of random wave slamming on structures in the splash zone

Abstract The numerical investigation of random wave slamming on superstructures of marine structures in the splash zone is presented in this paper. The impact pressures on the underside of the structure are computed based on the improved volume of fluid method (VOF). The governing equations are Reynolds time-averaged equations and the two equation k – e model. The third order upwind difference scheme is applied to the convection term to reduce the effect of numerical viscosity. The numerical wave flume with random wave-maker suitable for VOF is established. Appropriate moving contact-line boundary conditions are introduced to the model wave in contact with and separated from the underside of structure. Parametric studies have been carried out for different incident waves, structure dimensions and structure clearance. The numerical results are verified by the experimental results.