Nanocrystalline Cr/CrN and Ti/TiN multilayer coatings produced by pulsed laser deposition at room temperature

Mechanical components and tools in modern industry are facing increasing performance requirements leading to the growing need for advanced materials and thus, for modern frictional systems. In the last decades, the Pulsed Laser Deposition (PLD) has emerged as an unique tool to grow high quality monoas well as multilayers surfaces in metallic/ceramic systems. Building up a knowledge base of tribological properties of industrially-scaled, room temperature deposited PLD hard coatings are the most important step for the application of these coatings in engineering design. Although single-layer coatings find a range of applications, there are an increasing number of applications where the properties of a single material are not sufficient. One way to surmount this problem is to use a multilayer coating. Application of metallic interlayers improves adhesion of nitride hard layer in multilayer systems, which has been used in PVD processes for many years, however, the PLD technique gives new possibilities to produce system comprising many bilayers at room temperature. Tribological coatings consisted of 2, 4 and 16 bilayers of Cr/CrN and Ti/TiN type were fabricated with the Pulsed Laser Deposition (PLD) technique in the presented work. It is found in transmission electron examinations on thin foils prepared from cross-section that both nitride-based multilayer structures studied are characterized by small columnar crystallite sizes and high defect density, what might rise their hardness but compromise coating adhesion. The intermediate metallic layers contained larger sized and less defective columnar structure compared to the nitride layers, which should improve the coatings toughness. Switching from single layer to multi-layer metal/nitride composition improved resistance to delamination.

[1]  J. Lackner Industrially-scaled room-temperature pulsed laser deposition of Ti-TiN multilayer coatings , 2007 .

[2]  J. Lackner,et al.  Structural, mechanical and tribological investigations of pulsed laser deposited titanium nitride coatings , 2004 .

[3]  J. Lackner,et al.  Pulsed laser deposition of advanced titanium nitride thin layers , 2004 .

[4]  A. Madan,et al.  Stability of Nanometer-Thick Layers in Hard Coatings , 2003 .

[5]  E. Martínez,et al.  Multilayered chromium/chromium nitride coatings for use in pressure die-casting , 2001 .

[6]  T. Wierzchoń,et al.  Corrosion resistance of chromium nitride and oxynitride layers produced under glow discharge conditions , 2000 .

[7]  G. Bertrand,et al.  A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings , 2000 .

[8]  C. T. Wu,et al.  Comparison of tribological behavior of three films—TiN, TiCN and CrN—grown by physical vapor deposition , 1997 .

[9]  S. Hogmark,et al.  Multilayer cracking resistance in bending , 1997 .

[10]  S. Bull,et al.  Compositional, microstructural and morphological effects on the mechanical and tribological properties of chromium nitrogen films , 1990 .

[11]  S. Bull,et al.  The sliding wear of titanium nitride coatings , 1990 .

[12]  Li Mei,et al.  PULSED LASER DEPOSITION OF THIN FILMS , 2000 .

[13]  Richard F. Haglund,et al.  Laser ablation and desorption , 1998 .

[14]  S. Bull,et al.  Multilayer coatings for improved performance , 1996 .