Unraveling the Innermost Jet Structure of OJ 287 with the First GMVA + ALMA Observations

We present the first very long baseline interferometric (VLBI) observations of the blazar OJ 287 carried out jointly with the Global Millimeter VLBI Array (GMVA) and the phased Atacama Large Millimeter/submillimeter Array (ALMA) at 3.5 mm on 2017 April 2. The participation of phased ALMA has not only improved the GMVA north–south resolution by a factor of ∼3, but has also enabled fringe detections with signal-to-noise ratios up to 300 at baselines longer than 2 Gλ. The high sensitivity has motivated us to image the data with newly developed regularized maximum likelihood imaging methods, revealing the innermost jet structure with unprecedentedly high angular resolution. Our images reveal a compact and twisted jet extending along the northwest direction, with two bends within the inner 200 μas, resembling a precessing jet in projection. The component at the southeastern end shows a compact morphology and high brightness temperature, and is identified as the VLBI core. An extended jet feature that lies at ∼200 μas northwest of the core shows a conical shape, in both total and linearly polarized intensity, and a bimodal distribution of the linear polarization electric vector position angle. We discuss the nature of this feature by comparing our observations with models and simulations of oblique and recollimation shocks with various magnetic field configurations. Our high-fidelity images also enabled us to search for possible jet features from the secondary supermassive black hole (SMBH) and test the SMBH binary hypothesis proposed for this source.

[1]  A. Lähteenmäki,et al.  Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz during 10 yr of the VLBA-BU-BLAZAR Program , 2022, The Astrophysical Journal Supplement Series.

[2]  T. Krichbaum,et al.  New jet feature in the parsec-scale jet of the blazar OJ287 connected to the 2017 teraelectronvolt flaring activity , 2022, Astronomy & Astrophysics.

[3]  A. Gopakumar,et al.  Promise of Persistent Multi-Messenger Astronomy with the Blazar OJ 287 , 2021, Galaxies.

[4]  D. Grupe,et al.  MOMO. IV. The Complete Swift X-Ray and UV/Optical Light Curve and Characteristic Variability of the Blazar OJ 287 during the Last Two Decades , 2021, The Astrophysical Journal.

[5]  D. Grupe,et al.  Project MOMO: Multiwavelength Observations and Modeling of OJ 287 , 2021, Universe.

[6]  A. Gopakumar,et al.  X-ray spectral components of the blazar and binary black hole candidate OJ 287 (2005–2020) , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  J. Martí,et al.  Magnetized relativistic jets and helical magnetic fields , 2021, Astronomy & Astrophysics.

[8]  A. Gopakumar,et al.  Explaining temporal variations in the jet PA of the blazar OJ 287 using its BBH central engine model , 2021, 2103.05274.

[9]  Daniel C. M. Palumbo,et al.  Polarimetric Properties of Event Horizon Telescope Targets from ALMA , 2021, The Astrophysical Journal Letters.

[10]  A. Gopakumar,et al.  The 2020 April–June super-outburst of OJ 287 and its long-term multiwavelength light curve with Swift: binary supermassive black hole and jet activity , 2020, Monthly Notices of the Royal Astronomical Society: Letters.

[11]  A. Gopakumar,et al.  Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287 , 2020, The Astrophysical Journal.

[12]  C. Hesp,et al.  Observational signatures of disc and jet misalignment in images of accreting black holes , 2020, Monthly Notices of the Royal Astronomical Society.

[13]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[14]  J. Algaba,et al.  Ejection of Double Knots from the Radio Core of PKS 1510–089 during the Strong Gamma-Ray Flares in 2015 , 2019, The Astrophysical Journal.

[15]  C. Hesp,et al.  Disc tearing and Bardeen–Petterson alignment in GRMHD simulations of highly tilted thin accretion discs , 2019, Monthly Notices of the Royal Astronomical Society.

[16]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[17]  A. Lobanov,et al.  Derivation of the physical parameters of the jet in S5 0836+710 from stability analysis , 2019, Astronomy & Astrophysics.

[18]  L. Blackburn,et al.  Calibration of ALMA as a Phased Array. ALMA Observations During the 2017 VLBI Campaign , 2019, Publications of the Astronomical Society of the Pacific.

[19]  Arvind Satyanarayan,et al.  Altair: Interactive Statistical Visualizations for Python , 2018, J. Open Source Softw..

[20]  E. Ros,et al.  Global Millimeter VLBI Array Survey of Ultracompact Extragalactic Radio Sources at 86 GHz , 2018, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[21]  F. G. Pinilla,et al.  Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters , 2018, The Astrophysical Journal.

[22]  I. Pashchenko,et al.  OJ287: deciphering the ‘Rosetta stone of blazars’ , 2018 .

[23]  M. Perucho,et al.  Total and Linearly Polarized Synchrotron Emission from Overpressured Magnetized Relativistic Jets , 2018, Astrophysical Journal.

[24]  Kazunori Akiyama,et al.  Interferometric Imaging Directly with Closure Phases and Closure Amplitudes , 2018, 1803.07088.

[25]  S. Ikeda,et al.  Superresolution Interferometric Imaging with Sparse Modeling Using Total Squared Variation: Application to Imaging the Black Hole Shadow , 2018, 1802.05783.

[26]  Do-Young Byun,et al.  The Power of Simultaneous Multi-frequency Observations for mm-VLBI: Beyond Frequency Phase Transfer , 2017, 1712.06243.

[27]  E. Ros,et al.  Radio observations of active galactic nuclei with mm-VLBI , 2017, The Astronomy and Astrophysics Review.

[28]  A. Lähteenmäki,et al.  Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program , 2017, 1711.03983.

[29]  Berkeley,et al.  Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations , 2017, 1707.06619.

[30]  M. Cohen OJ 287 as a Rotating Helix , 2017 .

[31]  Kazunori Akiyama,et al.  Superresolution Full-polarimetric Imaging for Radio Interferometry with Sparse Modeling , 2017, 1702.00424.

[32]  R. Dodson,et al.  The Power of (Near) Simultaneous Multi-Frequency Observations for mm-VLBI and Astrometry , 2017 .

[33]  B. Rani,et al.  Location of γ-ray emission and magnetic field strengths in OJ 287 , 2016, 1607.00725.

[34]  Alan Roy,et al.  Calibration of mixed-polarization interferometric observations Tools for the reduction of interferometric data from elements with linear and circular polarization receivers , 2016, 1601.04266.

[35]  E. Ros,et al.  Spectral evolution of flaring blazars from numerical simulations , 2016, 1601.03181.

[36]  A. Lobanov Brightness temperature constraints from interferometric visibilities , 2014, 1412.2121.

[37]  E. Ros,et al.  On the location of the supermassive black hole in CTA 102 , 2014, 1412.1317.

[38]  Kazunori Akiyama,et al.  Super-resolution imaging with radio interferometry using sparse modeling , 2014, 1407.2422.

[39]  E. Ros,et al.  Catching the radio flare in CTA 102 - III. Core-shift and spectral analysis , 2013, 1306.6208.

[40]  E. Ros,et al.  Catching the radio flare in CTA 102 - II. VLBI kinematic analysis , 2012, 1211.3606.

[41]  S. Ciprini,et al.  On the masses of OJ287 black holes , 2012, 1208.0906.

[42]  E. Ros,et al.  Catching the radio flare in CTA 102 - I. Light curve analysis , 2011, 1105.5024.

[43]  Richard Dodson,et al.  HIGH-PRECISION ASTROMETRIC MILLIMETER VERY LONG BASELINE INTERFEROMETRY USING A NEW METHOD FOR ATMOSPHERIC CALIBRATION , 2011, 1101.2051.

[44]  M. Kidger,et al.  A massive binary black-hole system in OJ 287 and a test of general relativity , 2008, Nature.

[45]  Sang-Sung Lee,et al.  A GLOBAL 86 GHZ VLBI SURVEY OF COMPACT RADIO SOURCES , 2007, 0803.4035.

[46]  A. T. Deller,et al.  DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments , 2007, astro-ph/0702141.

[47]  W. Keel,et al.  The 2005 November Outburst in OJ 287 and the Binary Black Hole Model , 2006 .

[48]  T. Cawthorne Polarization of synchrotron radiation from conical shock waves , 2006 .

[49]  M. Lister,et al.  MOJAVE: Monitoring of Jets in AGN with VLBA Experiments - I. First-Epoch 15 GHz Linear Polarization Images , 2005, astro-ph/0503152.

[50]  K. Kingham,et al.  Structure of OJ 287 from Geodetic VLBA Data , 2004 .

[51]  H. Hirabayashi,et al.  VSOP Space VLBI and Geodetic VLBI Investigations of Southern Hemisphere Radio Sources , 2002 .

[52]  H. Lehto,et al.  OJ 287 Outburst Structure and a Binary Black Hole Model , 1996 .

[53]  A. Marscher,et al.  Parsec-Scale Synchrotron Emission from Hydrodynamic Relativistic Jets in Active Galactic Nuclei , 1995 .

[54]  Anthony C. S. Readhead,et al.  Equipartition brightness temperature and the inverse Compton catastrophe , 1994 .

[55]  W. K. Cobb,et al.  Linear polarization of radiation from oblique and conical shocks , 1990 .

[56]  A. Sillanpää,et al.  OJ 287 - Binary pair of supermassive black holes , 1988 .

[57]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[58]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[59]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[60]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .