Asymmetries in the inner regions of ΛCDM haloes

Many galaxies display warps, lopsided images, asymmetric rotation curves or other features which suggest that their immediate dynamical environment is neither static nor in equilibrium. In cold dark matter (CDM) theories, such non-equilibrium features are expected in the inner regions of many dark haloes as a result of recent hierarchical growth. We used the excellent statistics provided by the very large Millennium Simulation to study (i) how the distribution of position and velocity asymmetries predicted for halo cores by the concordance ACDM cosmogony depends on halo mass and (ii) how much of the dark matter in the inner core has been added at relatively recent times. Asymmetries are typically larger in more massive haloes. Thus 20 per cent of cluster haloes have density centre separated from barycentre by more than 20 per cent of the virial radius, while only 7 per cent of Milky Way haloes have such large asymmetries. About 40 per cent of all cluster haloes have a mean core velocity which differs from the barycentre velocity by more than a quarter of the characteristic halo circular velocity, whereas only 10 per cent of Milky Way haloes have such large velocity offsets. About 25 per cent of all cluster haloes have acquired more than a quarter of the mass currently in their inner 10 kpc through mergers since z = 1. The corresponding percentage of Milky Way haloes is 15 per cent. These numbers seem quite compatible with the levels of asymmetry seen in the observable regions of galaxies, but quantitative comparison requires more detailed modelling of the observable components.

[1]  The Vertical Structure of the Outer Milky Way H I Disk , 2006, astro-ph/0601697.

[2]  J. Weller,et al.  Statistics of Physical Properties of Dark Matter Clusters , 2005, astro-ph/0509856.

[3]  S. White,et al.  The age dependence of halo clustering , 2005, astro-ph/0506510.

[4]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[5]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[6]  F. Bournaud,et al.  Lopsided spiral galaxies: evidence for gas accretion , 2005, astro-ph/0503314.

[7]  Cheng Li,et al.  The phase-space parameters of the brightest halo galaxies , 2005, astro-ph/0502466.

[8]  Risa H. Wechsler,et al.  The Physics of Galaxy Clustering. I. A Model for Subhalo Populations , 2005 .

[9]  C. Giocoli,et al.  The mass function and average mass-loss rate of dark matter subhaloes , 2004, astro-ph/0409201.

[10]  S. White,et al.  The subhalo populations of ΛCDM dark haloes , 2004, astro-ph/0404589.

[11]  J. Stadel,et al.  Convergence and scatter of cluster density profiles , 2004, astro-ph/0402267.

[12]  S. White,et al.  Early Formation and Late Merging of the Giant Galaxies , 2003, astro-ph/0312499.

[13]  The evolution of substructure in galaxy, group and cluster haloes - I. Basic dynamics , 2003, astro-ph/0301612.

[14]  R. Sancisi,et al.  Neutral hydrogen and optical observations of edge-on galaxies : Hunting for warps , 2002, astro-ph/0207112.

[15]  C. Jog Large-scale asymmetry of rotation curves in lopsided spiral galaxies , 2002, astro-ph/0207055.

[16]  S. Basilakos,et al.  Searching for cluster substructure using APM and ROSAT data , 2000, astro-ph/0002432.

[17]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[18]  R. Ibata,et al.  Galactic Halo Substructure in the Sloan Digital Sky Survey: The Ancient Tidal Stream from the Sagittarius Dwarf Galaxy , 2000, astro-ph/0004255.

[19]  V. Debattista,et al.  Warped Galaxies from Misaligned Angular Momenta , 1999, astro-ph/9901153.

[20]  R. Sancisi,et al.  Kinematically lopsided spiral galaxies , 1998, astro-ph/9811424.

[21]  S. White,et al.  Sinking satellites and the heating of galaxy discs , 1998, astro-ph/9809412.

[22]  The origin of brightest cluster galaxies. , 1997, astro-ph/9709102.

[23]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[24]  H. Rix,et al.  Lopsided Spiral Galaxies and a Limit on the Galaxy Accretion Rate , 1996, astro-ph/9608086.

[25]  G. Starkman,et al.  Axiorecombination: A New Mechanism for Stellar Axion Production , 1986 .

[26]  S. Cole,et al.  The structure of dark matter haloes in hierarchical clustering models , 1995, astro-ph/9510147.

[27]  J. Mohr,et al.  Cosmological Constraints from Observed Cluster X-Ray Morphologies , 1995, astro-ph/9501011.

[28]  Jeremiah P. Ostriker,et al.  Galactic disks, infall, and the global value of Omega , 1992 .

[29]  F. Briggs RULES OF BEHAVIOR FOR GALACTIC WARPS , 1990 .

[30]  John P. Huchra,et al.  The kinematics of Abell clusters , 1989 .

[31]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[32]  E. Athanassoula Internal Kinematics and Dynamics of Galaxies , 1983 .

[33]  S. White,et al.  Dynamical Friction in Spherical Clusters , 1976 .

[34]  S. Tremaine,et al.  Another evolutionary correction to the luminosity of giant galaxies , 1975 .