11 – Structural Representations of Musical Pitch

[1]  R. Shepard Geometrical approximations to the structure of musical pitch. , 1982, Psychological review.

[2]  C. Krumhansl,et al.  Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. , 1982, Psychological review.

[3]  C. Krumhansl,et al.  Perceived harmonic structure of chords in three related musical keys. , 1982, Journal of experimental psychology. Human perception and performance.

[4]  Gerald J. Balzano,et al.  The role of chroma and scalestep in the recognition of musical intervals in and out of context. , 1982 .

[5]  R N Shepard,et al.  Multidimensional Scaling, Tree-Fitting, and Clustering , 1980, Science.

[6]  J. Bartlett,et al.  Recognition of transposed melodies: a key-distance effect in developmental perspective. , 1980, Journal of experimental psychology. Human perception and performance.

[7]  Gerald J. Balzano,et al.  The group-theoretic description of 12-fold and microtonal pitch systems , 1980 .

[8]  L. Cuddy,et al.  Melody recognition: the experimental application of musical rules. , 1979, Canadian journal of psychology.

[9]  Hugh Christopher Longuet-Higgins,et al.  Review Lecture The perception of music , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  C. Krumhansl The psychological representation of musical pitch in a tonal context , 1979, Cognitive Psychology.

[11]  R. Zatorre,et al.  Identification, discrimination, and selective adaptation of simultaneous musical intervals , 1979, Perception & psychophysics.

[12]  D. G. Weeks,et al.  A comparison of linear and monotone multidimensional scaling models. , 1979 .

[13]  D W Massaro,et al.  Tone chroma is functional in melody recognition , 1979, Perception & psychophysics.

[14]  R. Shepard,et al.  Quantification of the hierarchy of tonal functions within a diatonic context. , 1979, Journal of experimental psychology. Human perception and performance.

[15]  D W Massaro,et al.  A bidimensional model of pitch in the recognition of melodies , 1978, Perception & psychophysics.

[16]  C. Krumhansl Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density. , 1978 .

[17]  John R. Anderson Arguments concerning representations for mental imagery. , 1978 .

[18]  W. Dowling Scale and contour: Two components of a theory of memory for melodies. , 1978 .

[19]  D Deutsch,et al.  Delayed pitch comparisons and the principle of proximity , 1978, Perception & psychophysics.

[20]  D. G. Weeks,et al.  Restricted multidimensional scaling models , 1978 .

[21]  W. D. Ward,et al.  Categorical perception--phenomenon or epiphenomenon: evidence from experiments in the perception of melodic musical intervals. , 1978, The Journal of the Acoustical Society of America.

[22]  Roger N. Shaepard On the Status of "Direct" Psychophysical Measurement , 1978 .

[23]  C. Fillmore The case for case reopened , 1977 .

[24]  W. Siegel,et al.  Categorical perception of tonal intervais: Musicians can’t tellsharp fromflat , 1977 .

[25]  A. Tversky Features of Similarity , 1977 .

[26]  W. Siegel,et al.  Absolute identification of notes and intervals by musicians , 1977 .

[27]  W. Thurlow,et al.  Judged similarity in pitch of octave multiples , 1977 .

[28]  W. Siegel,et al.  Categorical perception of tonal intervals: Musicians can't tell sharp irotaflat , 1977 .

[29]  Walter J Dowling,et al.  The perception of melodies distorted by splitting into several octaves: Effects of increasing proximity and melodic contour , 1977 .

[30]  D. Mewhort,et al.  Recognition memory for single tones with and without context. , 1977, Journal of experimental psychology. Human learning and memory.

[31]  M. R. Jones,et al.  Time, our lost dimension: toward a new theory of perception, attention, and memory. , 1976, Psychological review.

[32]  E. de Boer,et al.  On the “Residue” and Auditory Pitch Perception , 1976 .

[33]  R. Shepard Representation of structure in similarity data: Problems and prospects , 1974 .

[34]  E. M. Burns Octave adjustment by non‐western musicians , 1974 .

[35]  D. Hall,et al.  Quantitative Evaluation of Musical Scale Tunings , 1974 .

[36]  R. Shepard,et al.  A nonmetric variety of linear factor analysis , 1974 .

[37]  E. Terhardt Pitch, consonance, and harmony. , 1974, The Journal of the Acoustical Society of America.

[38]  S. Locke,et al.  Categorical perception in a non-linguistic mode. , 1973, Cortex; a journal devoted to the study of the nervous system and behavior.

[39]  J. L. Goldstein An optimum processor theory for the central formation of the pitch of complex tones. , 1973, The Journal of the Acoustical Society of America.

[40]  W. Dowling The perception of interleaved melodies , 1973 .

[41]  J. Sundberg,et al.  Musical octaves and pitch. , 1973, The Journal of the Acoustical Society of America.

[42]  F. Wightman The pattern-transformation model of pitch. , 1973, The Journal of the Acoustical Society of America.

[43]  D. Rumelhart,et al.  A model for analogical reasoning. , 1973 .

[44]  W. Dowling The 1215‐Cent Octave: Convergence of Western and Nonwestern Data on Pitch Scaling , 1973 .

[45]  Terry Winograd,et al.  Understanding natural language , 1974 .

[46]  Diana Deutsch,et al.  Octave generalization and tune recognition , 1972 .

[47]  A. Bregman,et al.  Primary auditory stream segregation and perception of order in rapid sequences of tones. , 1971, Journal of experimental psychology.

[48]  F. Attneave,et al.  Pitch as a medium: a new approach to psychophysical scaling. , 1971, The American journal of psychology.

[49]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[50]  W. R. Garner,et al.  The Stimulus in Information Processing , 1970 .

[51]  A. Kameoka,et al.  Consonance theory part II: consonance of complex tones and its calculation method. , 1969, The Journal of the Acoustical Society of America.

[52]  P. Daston,et al.  Musical consonance as musical preference: a cross-cultural study. , 1968, The Journal of general psychology.

[53]  David Allen,et al.  Octave discriminability of musical and non-musical subjects , 1967 .

[54]  Charles J. Fillmore,et al.  THE CASE FOR CASE. , 1967 .

[55]  W J Levelt,et al.  Triadic comparisons of musical intervals. , 1966, The British journal of mathematical and statistical psychology.

[56]  R. Shepard Metric structures in ordinal data , 1966 .

[57]  A. Pikler,et al.  Logarithmic Frequency Systems , 1966 .

[58]  R. Plomp,et al.  Tonal consonance and critical bandwidth. , 1965, The Journal of the Acoustical Society of America.

[59]  J. Kruskal Analysis of Factorial Experiments by Estimating Monotone Transformations of the Data , 1965 .

[60]  R. Shepard Circularity in Judgments of Relative Pitch , 1964 .

[61]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[62]  L. Elfner Systematic Shifts in the Judgment of Octaves of High Frequencies , 1964 .

[63]  R. Shepard Attention and the metric structure of the stimulus space. , 1964 .

[64]  John W. Tukey,et al.  Efficient Utilization of Non-Numerical Information in Quantitative Analysis General Theory and the Case of Simple Order , 1963 .

[65]  Jacob Beck,et al.  Single Estimates of Pitch Magnitude , 1963 .

[66]  N. Guttman,et al.  Lower limits of pitch and musical pitch. , 1962, Journal of Speech and Hearing Research.

[67]  Wilhelm Fucks,et al.  Mathematical analysis of formal structure of music , 1962, IRE Trans. Inf. Theory.

[68]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[69]  Charles Shackford,et al.  Some Aspects of Perception. II: Interval Sizes and Tonal Dynamics in Performance , 1962 .

[70]  R. Plomp,et al.  The connotation of musical consonance , 1962 .

[71]  J. Beck,et al.  The scaling of pitch by the method of magnitude-estimation. , 1961, The American journal of psychology.

[72]  C. Shackford Some Aspects of Perception. I: Sizes of Harmonic Intervals in Performance , 1961 .

[73]  Yehoshua Lakner,et al.  A New Method of Representing Tonal Relations , 1960 .

[74]  W. T. Powers,et al.  A General Feedback Theory of Human Behavior: Part I , 1960 .

[75]  W F OAKES,et al.  An experimental study of pitch naming and pitch discrimination reactions. , 1955, The Journal of genetic psychology.

[76]  W. D. Ward,et al.  Psychophysical Comparison of Just Tuning with Equal Temperament in Sequences of Individual Tones , 1954 .

[77]  W. D. Ward Subjective Musical Pitch , 1954 .

[78]  A. Bachem,et al.  Tone height and tone chroma as two different pitch qualities. , 1950 .

[79]  S. S. Stevens,et al.  The Relation of Pitch to Frequency: A Revised Scale , 1940 .

[80]  E. B. Newman,et al.  A Scale for the Measurement of the Psychological Magnitude Pitch , 1937 .

[81]  C. C. Ruckmick A new classification of tonal qualities. , 1929 .