Long-term potentiation in cultured hippocampal neurons.

[1]  John Lisman,et al.  Role of the CaMKII/NMDA Receptor Complex in the Maintenance of Synaptic Strength , 2011, The Journal of Neuroscience.

[2]  R. Huganir,et al.  Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating , 2011, Nature Neuroscience.

[3]  C. Winters,et al.  Trafficking of AMPA Receptors at Plasma Membranes of Hippocampal Neurons , 2011, The Journal of Neuroscience.

[4]  M. Ehlers,et al.  Mechanisms and Function of Dendritic Exocytosis , 2011, Neuron.

[5]  G. Collingridge,et al.  LTP in hippocampal neurons is associated with a CaMKII‐mediated increase in GluA1 surface expression , 2011, Journal of neurochemistry.

[6]  R. Dingledine,et al.  Glutamate Receptor Ion Channels: Structure, Regulation, and Function , 2010, Pharmacological Reviews.

[7]  T. Soderling,et al.  Long-Term Potentiation-Dependent Spine Enlargement Requires Synaptic Ca2+-Permeable AMPA Receptors Recruited by CaM-Kinase I , 2010, The Journal of Neuroscience.

[8]  D. Choquet,et al.  CaMKII Triggers the Diffusional Trapping of Surface AMPARs through Phosphorylation of Stargazin , 2010, Neuron.

[9]  G. Collingridge,et al.  Long-term depression in the CNS , 2010, Nature Reviews Neuroscience.

[10]  G. Collingridge,et al.  Disruption of the interaction between myosin VI and SAP97 is associated with a reduction in the number of AMPARs at hippocampal synapses , 2010, Journal of neurochemistry.

[11]  M. Sheng,et al.  Autophosphorylated CaMKIIα Acts as a Scaffold to Recruit Proteasomes to Dendritic Spines , 2010, Cell.

[12]  Stephen M. Fitzjohn,et al.  Metabotropic Glutamate Receptor-Mediated Long-Term Depression: Molecular Mechanisms , 2009, Pharmacological Reviews.

[13]  Roberto Malinow,et al.  AMPA Receptor Incorporation into Synapses during LTP: The Role of Lateral Movement and Exocytosis , 2009, Neuron.

[14]  Daniel Choquet,et al.  Endocytic Trafficking and Recycling Maintain a Pool of Mobile Surface AMPA Receptors Required for Synaptic Potentiation , 2009, Neuron.

[15]  J. Rostas,et al.  Regulation of CaMKII In vivo: The Importance of Targeting and the Intracellular Microenvironment , 2009, Neurochemical Research.

[16]  Seok-Jin R. Lee,et al.  Activation of CaMKII in single dendritic spines during long-term potentiation , 2009, Nature.

[17]  Michael D. Ehlers,et al.  Myosin Vb Mobilizes Recycling Endosomes and AMPA Receptors for Postsynaptic Plasticity , 2008, Cell.

[18]  M. Segal,et al.  Electron microscopic 3D‐reconstruction of dendritic spines in cultured hippocampal neurons undergoing synaptic plasticity , 2008, Developmental neurobiology.

[19]  Charles D. Kopec,et al.  GluR1 Links Structural and Functional Plasticity at Excitatory Synapses , 2007, The Journal of Neuroscience.

[20]  Alcino J. Silva,et al.  Interactions between the NR2B Receptor and CaMKII Modulate Synaptic Plasticity and Spatial Learning , 2007, The Journal of Neuroscience.

[21]  Y. Serulle,et al.  A GluR1-cGKII Interaction Regulates AMPA Receptor Trafficking , 2007, Neuron.

[22]  K. Thorn,et al.  Real-Time Imaging of Discrete Exocytic Events Mediating Surface Delivery of AMPA Receptors , 2007, The Journal of Neuroscience.

[23]  M. Segal,et al.  Morphological constraints on calcium dependent glutamate receptor trafficking into individual dendritic spine. , 2007, Cell calcium.

[24]  Chris J. McBain,et al.  The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity , 2007, Neuron.

[25]  R. Zukin,et al.  Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death , 2007, Trends in Neurosciences.

[26]  T. Soderling,et al.  Regulatory mechanisms of AMPA receptors in synaptic plasticity , 2007, Nature Reviews Neuroscience.

[27]  Kristen M. Harris,et al.  Plasticity-Induced Growth of Dendritic Spines by Exocytic Trafficking from Recycling Endosomes , 2006, Neuron.

[28]  O. Arancio,et al.  Early presynaptic changes during plasticity in cultured hippocampal neurons , 2006, The EMBO journal.

[29]  J. Rostas,et al.  Phosphorylation of CaMKII at Thr253 occurs in vivo and enhances binding to isolated postsynaptic densities , 2006, Journal of neurochemistry.

[30]  Mark Farrant,et al.  Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond , 2006, Current Opinion in Neurobiology.

[31]  G. Collingridge,et al.  Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation , 2006, Nature Neuroscience.

[32]  Ann Marie Craig,et al.  Postsynaptic protein mobility in dendritic spines: Long-term regulation by synaptic NMDA receptor activation , 2006, Molecular and Cellular Neuroscience.

[33]  Roberto Malinow,et al.  Glutamate Receptor Exocytosis and Spine Enlargement during Chemically Induced Long-Term Potentiation , 2006, The Journal of Neuroscience.

[34]  A. Craig,et al.  How to build a central synapse: clues from cell culture , 2006, Trends in Neurosciences.

[35]  Menahem Segal,et al.  Simultaneous NMDA-Dependent Long-Term Potentiation of EPSCs and Long-Term Depression of IPSCs in Cultured Rat Hippocampal Neurons , 2006, The Journal of Neuroscience.

[36]  T. Soderling,et al.  Extrasynaptic Membrane Trafficking Regulated by GluR1 Serine 845 Phosphorylation Primes AMPA Receptors for Long-term Potentiation* , 2006, Journal of Biological Chemistry.

[37]  R. Malinow,et al.  NMDA Receptor Subunit Composition Controls Synaptic Plasticity by Regulating Binding to CaMKII , 2005, Neuron.

[38]  V. Derkach,et al.  Dominant role of the GluR2 subunit in regulation of AMPA receptors by CaMKII , 2005, Nature Neuroscience.

[39]  Solomon H. Snyder,et al.  S-Nitrosylation of N-Ethylmaleimide Sensitive Factor Mediates Surface Expression of AMPA Receptors , 2005, Neuron.

[40]  G. Collingridge,et al.  Receptor trafficking and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[41]  T. Bliss,et al.  Autonomous activity of CaMKII is only transiently increased following the induction of long‐term potentiation in the rat hippocampus , 2004, The European journal of neuroscience.

[42]  John Lisman,et al.  Persistent Accumulation of Calcium/Calmodulin-Dependent Protein Kinase II in Dendritic Spines after Induction of NMDA Receptor-Dependent Chemical Long-Term Potentiation , 2004, The Journal of Neuroscience.

[43]  Mikyoung Park,et al.  Recycling Endosomes Supply AMPA Receptors for LTP , 2004, Science.

[44]  J. Lisman,et al.  Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. , 2004, Journal of neurophysiology.

[45]  R. Huganir,et al.  Temporal dynamics of NMDA receptor-induced changes in spine morphology and AMPA receptor recruitment to spines. , 2004, Biochemical and biophysical research communications.

[46]  M. Segal,et al.  Protein kinase C and ERK involvement in dendritic spine plasticity in cultured rodent hippocampal neurons , 2003, The European journal of neuroscience.

[47]  Fang Liu,et al.  Activation of PI3-Kinase Is Required for AMPA Receptor Insertion during LTP of mEPSCs in Cultured Hippocampal Neurons , 2003, Neuron.

[48]  E. Molnár,et al.  Review: Developmental Changes in Ionotropic Glutamate Receptors: Lessons from Hippocampal Synapses , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[49]  J. Lisman,et al.  The molecular basis of CaMKII function in synaptic and behavioural memory , 2002, Nature Reviews Neuroscience.

[50]  J. Isaac,et al.  Developmental and Activity Dependent Regulation of Ionotropic Glutamate Receptors at Synapses , 2002, TheScientificWorldJournal.

[51]  G. Collingridge,et al.  An electrophysiological characterisation of long-term potentiation in cultured dissociated hippocampal neurones , 2001, Neuropharmacology.

[52]  Jacques Noël,et al.  Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes , 2001, Neuropharmacology.

[53]  M. Salter LTP gets culture , 2001, Trends in Neurosciences.

[54]  V. Piëch,et al.  Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons , 2001, Nature Neuroscience.

[55]  R. Huganir,et al.  Activation of Silent Synapses by Rapid Activity-Dependent Synaptic Recruitment of AMPA Receptors , 2001, The Journal of Neuroscience.

[56]  J. Lisman,et al.  A Model of Synaptic Memory A CaMKII/PP1 Switch that Potentiates Transmission by Organizing an AMPA Receptor Anchoring Assembly , 2001, Neuron.

[57]  Paul De Koninck,et al.  Interaction with the NMDA receptor locks CaMKII in an active conformation , 2001, Nature.

[58]  W. Ju,et al.  LTP in a Culture Dish , 2001, TheScientificWorldJournal.

[59]  Roberto Malinow,et al.  Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons , 2001, Cell.

[60]  M. di Luca,et al.  Hippocampal Synaptic Plasticity Involves Competition between Ca2+/Calmodulin-Dependent Protein Kinase II and Postsynaptic Density 95 for Binding to the NR2A Subunit of the NMDA Receptor , 2001, The Journal of Neuroscience.

[61]  K. Deisseroth,et al.  Activity-dependent CREB phosphorylation: Convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Karl Deisseroth,et al.  Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology , 2001, Nature Neuroscience.

[63]  Wei-Yang Lu,et al.  Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons , 2001, Neuron.

[64]  Miri Goldin,et al.  Functional Plasticity Triggers Formation and Pruning of Dendritic Spines in Cultured Hippocampal Networks , 2001, The Journal of Neuroscience.

[65]  G. Collingridge,et al.  Developmental Changes in Synaptic AMPA and NMDA Receptor Distribution and AMPA Receptor Subunit Composition in Living Hippocampal Neurons , 2000, The Journal of Neuroscience.

[66]  M. Inagaki,et al.  Activation of Ca2+/calmodulin-dependent protein kinase II within post-synaptic dendritic spines of cultured hippocampal neurons. , 2000, The Journal of biological chemistry.

[67]  G. Collingridge,et al.  Surface Expression of AMPA Receptors in Hippocampal Neurons Is Regulated by an NSF-Dependent Mechanism , 1999, Neuron.

[68]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[69]  R. Malinow,et al.  Calcium-Evoked Dendritic Exocytosis in Cultured Hippocampal Neurons. Part II: Mediation by Calcium/Calmodulin-Dependent Protein Kinase II , 1998, The Journal of Neuroscience.

[70]  R. Malinow,et al.  Calcium-Evoked Dendritic Exocytosis in Cultured Hippocampal Neurons. Part I: Trans-Golgi Network-Derived Organelles Undergo Regulated Exocytosis , 1998, The Journal of Neuroscience.

[71]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[72]  D. Lovinger,et al.  Translocation of Autophosphorylated Calcium/Calmodulin-dependent Protein Kinase II to the Postsynaptic Density* , 1997, The Journal of Biological Chemistry.

[73]  G. Collingridge,et al.  Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons 1 The first two authors contributed equally to this work. 1 , 1996, Neuroscience.

[74]  Gang Tong,et al.  Long-Term Potentiation in Cultures of Single Hippocampal Granule Cells: A Presynaptic Form of Plasticity , 1996, Neuron.

[75]  D. Rusakov,et al.  Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  E. Kandel,et al.  Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons , 1995, Nature.

[77]  M. Baudry,et al.  Glycine-induced changes in synaptic efficacy in hippocampal slices involve changes in AMPA receptors , 1993, Brain Research.

[78]  D. Muller,et al.  Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. , 1993, The Journal of biological chemistry.

[79]  T. Soderling,et al.  Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II , 1993, Nature.

[80]  Antonio Malgaroli,et al.  Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons , 1992, Nature.

[81]  C. Stevens,et al.  Presynaptic mechanism for long-term potentiation in the hippocampus , 1990, Nature.

[82]  J. Miller,et al.  Calcium-induced long-term potentiation in the hippocampus , 1982, Neuroscience.

[83]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.

[84]  K. Deisseroth,et al.  Signaling from Synapse to Nucleus: Postsynaptic CREB Phosphorylation during Multiple Forms of Hippocampal Synaptic Plasticity , 1996, Neuron.