Response of Ionospheric Profile Parameters to Equatorial Electrojet Over Peruvian Station

The response of the ionospheric bottomside electron density profile parameters of the F2 layer, namely, the maximum electron density (NmF2), the maximum height of F2 layer (hmF2), and bottomside thickness (B0) parameter to the equatorial electrojet (EEJ) current is examined for a Peruvian location at the Jicamarca station (12 °S, 76.9 °W) in the South American sector. The results of the analysis show that both hmF2 and B0 increase for ~2 h before sunrise and exhibit a postsunset peak during the equinoctial and summer months. The increase in the peak height, hmF2, is observed to terminate before midday, while B0 continued to increase throughout the daytime. The apparent midday and postnoon peaks in NmF2 occur in all the seasons under study. It was demonstrated that a relationship exists between EEJ and the profile parameters hmF2 and B0 during low and moderate solar conditions. Conversely, the correlation coefficient between EEJ and NmF2 is statistically significant only during solar minimum conditions but correlates poorly, if at all, with EEJ during moderate solar activity.

[1]  Jann‐Yenq Liu,et al.  Impact of Assimilating the FORMOSAT‐3/COSMIC and FORMOSAT‐7/COSMIC‐2 RO Data on the Midlatitude and Low‐Latitude Ionospheric Specification , 2018, Earth and Space Science.

[2]  E. Romanova,et al.  Solar cycle variation of ionospheric parameters over the low latitude station Hainan, China, during 2002–2012 and its comparison with IRI-2012 model , 2017 .

[3]  M. Abdullah,et al.  Variations of B0 and B1 with the solar quiet Sq-current system and comparison with IRI-2012 model at Ilorin , 2017 .

[4]  M. Abdullah,et al.  Investigation of ionospheric minimum frequency near dip equator , 2017 .

[5]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2016: From ionospheric climate to real‐time weather predictions , 2017 .

[6]  T. Kikuchi,et al.  Possible relationship between the equatorial electrojet (EEJ) and daytime vertical E × B drift velocities in F region from ROCSAT observations , 2016 .

[7]  John Bosco Habarulema,et al.  Daytime twin-peak structures observed at southern African and European middle latitudes on 8–13 April 2012 , 2016 .

[8]  Huixin Liu,et al.  Empirical model of equatorial electrojet based on ground-based magnetometer data during solar minimum in fall , 2015, Earth, Planets and Space.

[9]  T. Maruyama,et al.  Low‐latitude ionospheric height variation as observed by meridional ionosonde chain: Formation of ionospheric ceiling over the magnetic equator , 2014 .

[10]  Huixin Liu,et al.  Relationship between the equatorial electrojet and global Sq currents at the dip equator region , 2014, Earth, Planets and Space.

[11]  F. Sassi,et al.  On the day‐to‐day variation of the equatorial electrojet during quiet periods , 2014 .

[12]  B. Reinisch,et al.  Quantifying the EEJ current with ground-based ionosonde inferred vertical E × B drifts in the morning hours over Ilorin, West Africa , 2014, Acta Geophysica.

[13]  B. Damtie,et al.  The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors , 2014 .

[14]  Vladimir Truhlik,et al.  The International Reference Ionosphere 2012 – a model of international collaboration , 2014 .

[15]  Yasuo Ogawa,et al.  New volume of Earth, Planets and Space with an open access-style publishing model under SpringerOpen , 2014, Earth, Planets and Space.

[16]  Huixin Liu,et al.  Equatorial electrojet dependence on solar activity in the Southeast Asia sector , 2013 .

[17]  B. Reinisch,et al.  F2 layer characteristics and electrojet strength over an equatorial station , 2013 .

[18]  M. G. Cardinal,et al.  An empirical model of the quiet daily geomagnetic field variation , 2011 .

[19]  Bodo W. Reinisch,et al.  Global Ionospheric Radio Observatory (GIRO) , 2011 .

[20]  Jann‐Yenq Liu,et al.  Wind dynamo effects on ground magnetic perturbations and vertical drifts , 2008 .

[21]  B. Damtie,et al.  A new index to monitor temporal and long-term variations of the equatorial electrojet by MAGDAS/CPMN real-time data: EE-Index , 2008 .

[22]  Bodo W. Reinisch,et al.  Quiet-condition hmF2, NmF2, and B0 variations at Jicamarca and comparison with IRI-2001during solar maximum , 2006 .

[23]  N. Sharma,et al.  Day-to-day variability of equatorial and low latitude F-region ionosphere in the Indian zone , 2006 .

[24]  Bodo W. Reinisch,et al.  Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes , 2005 .

[25]  Ivan A. Galkin,et al.  Automated collection and dissemination of ionospheric data from the digisonde network , 2005 .

[26]  David N. Anderson,et al.  Daytime vertical E × B drift velocities inferred from ground‐based magnetometer observations at low latitudes , 2004 .

[27]  Nils Olsen,et al.  Extending comprehensive models of the Earth's magnetic field with Ørsted and CHAMP data , 2004 .

[28]  R. Heelis,et al.  Electrodynamics in the low and middle latitude ionosphere: a tutorial , 2004 .

[29]  B. Arora,et al.  Local time and longitude dependence of the equatorial electrojet magnetic effects , 2003 .

[30]  E. Kudeki,et al.  Estimating daytime vertical ExB drift velocities in the equatorial F‐region using ground‐based magnetometer observations , 2002 .

[31]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[32]  Y. Hamano,et al.  Daily variations of geomagnetic HD and Z-field at equatorial latitudes , 2000 .

[33]  B. Rabiu,et al.  Day-to-day variability of geomagnetic hourly amplitudes at low latitudes , 1998 .

[34]  Bela G. Fejer,et al.  Low latitude electrodynamic plasma drifts - A review , 1991 .

[35]  M. Takeda Role of Hall conductivity in the ionospheric dynamo , 1991 .

[36]  T. Moore,et al.  The Earth's Ionosphere. Plasma Physics and Electrodynamics. Michael C. Kelley, with contributions from Rodney A. Heelis. Academic Press, San Diego, CA, 1989. xii, 487 pp., illus. $89.95. International Geophysics Series, vol. 43. , 1990, Science.

[37]  E. Bonelli,et al.  The prereversal enhancement of the zonal electric field in the equatorial ionosphere , 1986 .

[38]  J. Forbes The equatorial electrojet , 1981 .

[39]  R. Rastogi,et al.  Equatorial electron densities—seasonal and solar cycle changes , 1977 .

[40]  J. Forbes,et al.  Atmospheric solar tides and their electrodynamic effects. I - The global Sq current system. II - The equatorial electrojet , 1976 .

[41]  A. Richmond Equatorial electrojet-I. Development of a model including winds and instabilities , 1973 .

[42]  A. Richmond,et al.  The relationship between the structure of the equatorial anomaly and the strength of the equatorial electrojet , 1973 .

[43]  A. Onwumechilli,et al.  The equatorial electrojet and the world-wide Sq currents , 1967 .

[44]  S. Chapman The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere , 1951 .

[45]  R. Fleury,et al.  Estimating some parameters of the equatorial ionosphere electrodynamics from ionosonde data in West Africa , 2017 .

[46]  B. Reinisch,et al.  Variations in equatorial F2-layer parameters and comparison with IRI-2007 during a deep solar minimum , 2012 .

[47]  B. Reinisch,et al.  Quiet-time variations of F2-layer parameters at Jicamarca and comparison with IRI-2001 during solar minimum , 2008 .

[48]  Wallace H. Campbell,et al.  Introduction to Geomagnetic Fields: Applications , 2003 .

[49]  D. Bilitza,et al.  EQUATORIAL F2-LAYER PEAK HEIGHT AND CORRELATION WITH VERTICAL ION DRIFT AND M(3000)F2 , 2003 .

[50]  Xueqin Huang,et al.  Finding better B0 and B1 parameters for the IRI F2-profile function , 1998 .

[51]  Bodo W. Reinisch,et al.  Vertical electron density profiles from the Digisonde network , 1996 .

[52]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .