The modified PRP conjugate gradient algorithm under a non-descent line search and its application in the Muskingum model and image restoration problems

In this paper, a modified Polak–Ribiere–Polyak (PRP) method, which possesses the following desired properties for unconstrained optimization problems, is presented. (i) The search direction of the given method has the gradient value and the function value. (ii) A non-descent backtracking-type line search technique is proposed to obtain the step size $$\alpha _k$$ and construct a point. (iii) The method inherits an important property of the classical PRP method: the tendency to turn towards the steepest descent direction if a small step is generated away from the solution, preventing a sequence of tiny steps from happening. (iv) The strongly global convergence and R-linear convergence of the modified PRP method for nonconvex optimization are established under some suitable assumptions. (v) The numerical results show that the modified PRP method not only is interesting in practical computation but also has better performance than the normal PRP method in estimating the parameters of the nonlinear Muskingum model and performing image restoration.

[1]  Gonglin Yuan,et al.  The PRP conjugate gradient algorithm with a modified WWP line search and its application in the image restoration problems , 2020, Applied Numerical Mathematics.

[2]  Gonglin Yuan,et al.  Convergence analysis of a modified BFGS method on convex minimizations , 2010, Comput. Optim. Appl..

[3]  Dong-Hui Li,et al.  On the convergence properties of the unmodified PRP method with a non-descent line search , 2014, Optim. Methods Softw..

[4]  Aijia Ouyang,et al.  A Class of Parameter Estimation Methods for Nonlinear Muskingum Model Using Hybrid Invasive Weed Optimization Algorithm , 2015 .

[5]  Gonglin Yuan,et al.  A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems , 2020 .

[6]  David F. Shanno,et al.  Conjugate Gradient Methods with Inexact Searches , 1978, Math. Oper. Res..

[7]  AIJIA OUYANG,et al.  Estimating parameters of Muskingum Model using an Adaptive Hybrid PSO Algorithm , 2014, Int. J. Pattern Recognit. Artif. Intell..

[8]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[9]  A. I. Cohen Rate of convergence of several conjugate gradient algorithms. , 1972 .

[10]  M. Powell Nonconvex minimization calculations and the conjugate gradient method , 1984 .

[11]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[12]  Xupei Zhao,et al.  A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization , 2015, PloS one.

[13]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[14]  Xiwen Lu,et al.  Global convergence of BFGS and PRP methods under a modified weak Wolfe–Powell line search , 2017 .

[15]  C. Storey,et al.  Generalized Polak-Ribière algorithm , 1992 .

[16]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[17]  Z. Geem Parameter Estimation for the Nonlinear Muskingum Model Using the BFGS Technique , 2006 .

[18]  Yu-Hong Dai New properties of a nonlinear conjugate gradient method , 2001, Numerische Mathematik.

[19]  Yu-Hong Dai,et al.  Conjugate Gradient Methods with Armijo-type Line Searches , 2002 .

[20]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[21]  W. Cheng A Two-Term PRP-Based Descent Method , 2007 .

[22]  J. M. Martínez,et al.  A Spectral Conjugate Gradient Method for Unconstrained Optimization , 2001 .

[23]  Luigi Grippo,et al.  A globally convergent version of the Polak-Ribière conjugate gradient method , 1997, Math. Program..

[24]  M. Powell Convergence properties of algorithms for nonlinear optimization , 1986 .

[25]  Ya-Xiang Yuan Analysis on the conjugate gradient method , 1993 .

[26]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[27]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .