Constructing B-spline representation of quadratic Sibson-Thomson splines

In this paper, we show how to construct a normalized B-spline basis for a special C 1 continuous splines of degree 2, defined on Sibson-Thomson refinement. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The dilatation equation can be found by applying the dyadic subdivision scheme directly to the Sibson-Thomson spline basis functions. As an application, a quasi-interpolation method, based on this Sibson-Thomson B-spline representation, is described which can be used for the efficient visualization of gridded surface data. B-spline basis of Sibson-Thomson splines.Refinement equation.Quasi-interpolants.

[1]  J. R. Busch,et al.  A note on Lagrange interpolation in R2 , 1990 .

[2]  Tom Lyche,et al.  A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines , 2013, Math. Comput..

[3]  Robin Sibson,et al.  A Seamed Quadratic Element for Contouring , 1981, Comput. J..

[4]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[5]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[6]  Bin Han,et al.  Multivariate refinable Hermite interpolant , 2003, Math. Comput..

[7]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[8]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[9]  Hendrik Speleers,et al.  A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..

[10]  Hendrik Speleers,et al.  Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..

[11]  Bin Han,et al.  Multivariate Refinable Hermite Interpolants , 2003 .

[12]  R. Beatson,et al.  Monotonicity Preserving Surface Interpolation , 1985 .

[13]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[14]  A. Serghini,et al.  Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .

[15]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[16]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[17]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[18]  E. Vanraes,et al.  Powell-Sabin splines and multiresolution techniques , 2004 .

[19]  Paul Sablonnière,et al.  On Some Multivariate Quadratic Spline Quasi—Interpolants on Bounded Domains , 2003 .

[20]  Hendrik Speleers,et al.  A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations , 2015 .

[21]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[22]  Catterina Dagnino,et al.  Some performances of local bivariate quadratic C 1 quasi-interpolating splines on nonuniform type-2 triangulations , 2005 .

[23]  Paul Sablonnière,et al.  On the convexity of C1 surfaces associated with some quadrilateral finite elements , 2000, Adv. Comput. Math..

[24]  Frank Zeilfelder,et al.  Optimal Quasi-Interpolation by Quadratic C 1-Splines on Type-2 Triangulations , 2005 .

[25]  Ahmed Tijini,et al.  A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation , 2014, Math. Comput. Simul..

[26]  Ren-hong Wang Multivariate Spline Functions and Their Applications , 2001 .

[27]  Jean-Louis Merrien,et al.  Dyadic Hermite interpolation on a rectangular mesh , 1999, Adv. Comput. Math..