Solubility studies of inorganic-organic hybrid nanoparticle photoresists with different surface functional groups.

The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.

[1]  Banqiu Wu,et al.  Extreme ultraviolet lithography: A review , 2007 .

[2]  Markos Trikeriotis,et al.  High refractive index and high transparency HfO2 nanocomposites for next generation lithography , 2010 .

[3]  U. Pal,et al.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors , 2012, Nanoscale Research Letters.

[4]  Markos Trikeriotis,et al.  Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning , 2012 .

[5]  T. Arita,et al.  Dispersion of Fatty Acid Surface Modified Ceria Nanocrystals in Various Organic Solvents , 2010 .

[6]  B. Jönsson,et al.  Electric double layer forces in the presence of polyelectrolytes , 1989 .

[7]  C. Schulz,et al.  Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid , 2012, Nanoscale Research Letters.

[8]  H. Low,et al.  Direct imprinting of high resolution TiO2 nanostructures , 2010, Nanotechnology.

[9]  F. Gharagheizi New procedure to calculate the Hansen solubility parameters of polymers , 2007 .

[10]  Markos Trikeriotis,et al.  A new inorganic EUV resist with high-etch resistance , 2012, Advanced Lithography.

[11]  T. Kozawa,et al.  Resist Materials and Processes for Extreme Ultraviolet Lithography , 2012 .

[12]  Markos Trikeriotis,et al.  Nanoparticle Photoresists: Ligand Exchange as a New, Sensitive EUV Patterning Mechanism , 2013 .

[13]  Li Li,et al.  Studying the Mechanism of Hybrid Nanoparticle Photoresists: Effect of Particle Size on Photopatterning , 2015 .

[14]  P. Charpentier,et al.  Synthesis of TiO(2)-PMMA nanocomposite: using methacrylic acid as a coupling agent. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[15]  H. Varbanov,et al.  Palladium(II) complexes with 5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione , 2009 .

[16]  Anthony S.T. Chiang,et al.  Carboxylic Acid-Directed Clustering and Dispersion of ZrO2 Nanoparticles in Organic Solvents: A Study by Small-Angle X-ray/Neutron Scattering and NMR , 2011 .

[17]  C. Sanchez,et al.  Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid , 1987 .

[18]  T. Arita,et al.  Size and size distribution balance the dispersion of colloidal CeO2 nanoparticles in organic solvents. , 2010, Nanoscale.

[19]  Markos Trikeriotis,et al.  Tightly bound ligands for hafnium nanoparticle EUV resists , 2012, Advanced Lithography.

[20]  T. Arita,et al.  Dispersion of Phosphonic Acids Surface-Modified Titania Nanocrystals in Various Organic Solvents , 2010 .

[21]  Jack L. Koenig,et al.  A review of polymer dissolution , 2003 .

[22]  M. Ulbricht,et al.  Systematic Investigation of Dispersions of Unmodified Inorganic Nanoparticles in Organic Solvents with Focus on the Hansen Solubility Parameters , 2012 .

[23]  R. Taft,et al.  The solvatochromic comparison method. 2. The .alpha.-scale of solvent hydrogen-bond donor (HBD) acidities , 1976 .

[24]  J. Stowers,et al.  High resolution, high sensitivity inorganic resists , 2009 .

[25]  C. Wagner,et al.  EUV lithography: Lithography gets extreme , 2010 .

[26]  Joel H. Hildebrand,et al.  The solubility of nonelectrolytes , 1964 .

[27]  R. Taft,et al.  The solvatochromic comparison method. I. The .beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities , 1976 .

[28]  C. Hansen,et al.  The Universality of the Solubility Parameter , 1969 .

[29]  Hong Yee Low,et al.  Direct patterning of TiO₂ using step-and-flash imprint lithography. , 2012, ACS nano.

[30]  S. Creager,et al.  INTERFACIAL SOLVATION AND DOUBLE-LAYER EFFECTS ON REDOX REACTIONS IN ORGANIZED ASSEMBLIES , 1994 .

[31]  J. Mabry,et al.  Hansen Solubility Parameters for Octahedral Oligomeric Silsesquioxanes , 2012 .

[32]  T. Arita,et al.  Supercritical Hydrothermal Synthesis of Carboxylic Acid-surface-functionalized TiO2 Nanocrystals: pH Sensitive Dispersion and Hybridization with Organic Compounds , 2010 .

[33]  P. Charpentier,et al.  FTIR study on the formation of TiO2 nanostructures in supercritical CO2. , 2006, The journal of physical chemistry. B.