From Relativistic Mechanics towards Relativistic Statistical Mechanics

Till now, kinetic theory and statistical mechanics of either free or interacting point particles were well defined only in non-relativistic inertial frames in the absence of the long-range inertial forces present in accelerated frames. As shown in the introductory review at the relativistic level, only a relativistic kinetic theory of “world-lines” in inertial frames was known till recently due to the problem of the elimination of the relative times. The recent Wigner-covariant formulation of relativistic classical and quantum mechanics of point particles required by the theory of relativistic bound states, with the elimination of the problem of relative times and with a clarification of the notion of the relativistic center of mass, allows one to give a definition of the distribution function of the relativistic micro-canonical ensemble in terms of the generators of the Poincare algebra of a system of interacting particles both in inertial and in non-inertial rest frames. The non-relativistic limit allows one to get the ensemble in non-relativistic non-inertial frames. Assuming the existence of a relativistic Gibbs ensemble, also a “Lorentz-scalar micro-canonical temperature” can be defined. If the forces between the particles are short range in inertial frames, the notion of equilibrium can be extended from them to the non-inertial rest frames, and it is possible to go to the thermodynamic limit and to define a relativistic canonical temperature and a relativistic canonical ensemble. Finally, assuming that a Lorentz-scalar one-particle distribution function can be defined with a statistical average, an indication is given of which are the difficulties in solving the open problem of deriving the relativistic Boltzmann equation with the same methodology used in the non-relativistic case instead of postulating it as is usually done. There are also some comments on how it would be possible to have a hydrodynamical description of the relativistic kinetic theory of an isolated fluid in local equilibrium by means of an effective relativistic dissipative fluid described in the Wigner-covariant framework.

[1]  P. V'an Internal energy in dissipative relativistic fluids , 2007, 0712.1437.

[2]  Robert M. Strain Global Newtonian Limit for the Relativistic Boltzmann Equation near Vacuum , 2010, SIAM J. Math. Anal..

[3]  G. M. Kremer On the kinetic theory of relativistic gases , 1997 .

[4]  Wolfgang Baumjohann,et al.  Relativistic transformation of phase-space distributions , 2011, 1105.2120.

[5]  D. Alba,et al.  GENERALIZED EULERIAN COORDINATES FOR RELATIVISTIC FLUIDS: HAMILTONIAN REST-FRAME INSTANT FORM, RELATIVE VARIABLES, ROTATIONAL KINEMATICS , 2002, hep-th/0209032.

[6]  N. Kampen,et al.  Relativistic Thermodynamics of Moving Systems , 1968 .

[7]  H. Crater,et al.  On the Relativistic Micro-Canonical Ensemble and Relativistic Kinetic Theory for N Relativistic Particles in Inertial and Non-Inertial Rest Frames , 2012, 1202.4667.

[8]  P. Romatschke Relativistic viscous fluid dynamics and non-equilibrium entropy , 2009, 0906.4787.

[9]  Priou Comparison between variational and traditional approaches to relativistic thermodynamics of dissipative fluids. , 1991, Physical review. D, Particles and fields.

[10]  Peter Hanggi,et al.  Relativistic Brownian Motion , 2008, 0812.1996.

[11]  B. Betz,et al.  Second order dissipative fluid dynamics from kinetic theory , 2010, 1012.5772.

[12]  L. Horwitz,et al.  Gibbs ensembles in relativistic classical and quantum mechanics , 1981 .

[13]  L. Lusanna Non-Inertial Frames in Special and General Relativity , 2013, 1310.4465.

[14]  CNRS,et al.  Statistical mechanics and dynamics of solvable models with long-range interactions , 2009, 0907.0323.

[15]  R. Hakim Introduction to Relativistic Statistical Mechanics: Classical and Quantum , 2011 .

[16]  C. Giardinà,et al.  Ergodic Properties of Microcanonical Observables , 1997, chao-dyn/9709015.

[17]  Action functionals for relativistic perfect fluids , 1993, gr-qc/9304026.

[18]  B. Boisseau,et al.  Relativistic Boltzmann theory in D + 1 spacetime dimensions , 1989 .

[19]  H. Crater,et al.  The Semiclassical relativistic Darwin potential for spinning particles in the rest frame instant form: Two-body bound states with spin 1/2 constituents , 2001 .

[20]  H. Touchette The large deviation approach to statistical mechanics , 2008, 0804.0327.

[21]  Lawrence Sklar,et al.  Assumption and myth in physical theory , 1969 .

[22]  P. Hänggi,et al.  Thermal equilibrium and statistical thermometers in special relativity. , 2007, Physical review letters.

[23]  A. Mangeney,et al.  Relativistic Kinetic Equations Including Radiation Effects. I. Vlasov Approximation , 1968 .

[24]  Paul Adrien Maurice Dirac,et al.  Lectures on Quantum Mechanics , 2001 .

[25]  L. Lusanna,et al.  The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: I) The Equations of Motion in Arbitrary Schwinger Time Gauges , 2009, 0907.4087.

[26]  R. Maartens Causal Thermodynamics in Relativity , 1996, astro-ph/9609119.

[27]  L. Lusanna Canonical Gravity and Relativistic Metrology: from Clock Synchronization to Dark Matter as a Relativistic Inertial Effect , 2011, 1205.2481.

[28]  Gonzalo Ares de Parga,et al.  Relativistic Statistical Mechanics vs. Relativistic Thermodynamics , 2011, Entropy.

[29]  E. Lehmann,et al.  Covariant equilibrium statistical mechanics , 2006, math-ph/0602060.

[30]  H. Crater,et al.  Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics , 2009, 0907.1816.

[31]  H. H. Rugh A geometric, dynamical approach to thermodynamics , 1997, chao-dyn/9703013.

[32]  A. Thyagaraja,et al.  Plasma physics in noninertial frames , 2009 .

[33]  E. Spiegel,et al.  Causal relativistic fluid dynamics , 2011, 1107.0319.

[34]  Theodore D. Drivas,et al.  Cascades and Dissipative Anomalies in Relativistic Fluid Turbulence , 2017, 1704.03541.

[35]  REVIEW: The Rest-Frame Instant Form of Metric Gravity , 2001, gr-qc/0101048.

[36]  B. Carter,et al.  Covariant theory of conductivity in ideal fluid or solid media , 1989 .

[37]  J. G. Powles,et al.  Temperature in the classical microcanonical ensemble , 2001 .

[38]  L. Lusanna,et al.  The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: II) The Weak Field Approximation in the 3-Orthogonal Gauges and Hamiltonian Post-Minkowskian Gravity: the N-Body Problem and Gravitational Waves with Asymptotic Background. , 2010 .

[39]  F. Debbasch Equilibrium distribution function of a relativistic dilute perfect gas , 2008 .

[40]  A. Parvan Lorentz transformations of the thermodynamic quantities , 2019, Annals of Physics.

[41]  E. Gourgoulhon AN INTRODUCTION TO RELATIVISTIC HYDRODYNAMICS , 2006, gr-qc/0603009.

[42]  T. Matolcsi,et al.  On the Momentum Distribution of Molecules of an Ideal Gas , 2022 .

[43]  The N- and 1-Time Classical Descriptions of N-Body Relativistic Kinematics and the Electromagnetic Interaction , 1995, hep-th/9512070.

[44]  L. Lusanna,et al.  CHARGED PARTICLES AND THE ELECTRO-MAGNETIC FIELD IN NONINERTIAL FRAMES OF MINKOWSKI SPACE-TIME I: ADMISSIBLE 3 + 1 SPLITTINGS OF MINKOWSKI SPACE-TIME AND THE NONINERTIAL REST FRAMES , 2009, 0908.0213.

[45]  Cesar S. Lopez-Monsalvo,et al.  Thermal dynamics in general relativity , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  E. A. Cheremukhin,et al.  On the definition of the microcanonical temperature of small weakly bound molecular clusters , 2010 .

[47]  R. Balescu Relativistic statistical thermodynamics , 1968 .

[48]  P. Bergmann Generalized Statistical Mechanics , 1951 .

[49]  Duccio Fanelli,et al.  Physics of Long-Range Interacting Systems , 2014 .

[50]  D. Gross,et al.  Microcanonical mean-field thermodynamics of self-gravitating and rotating systems. , 2002, Physical review letters.

[51]  Cesar S. Lopez-Monsalvo Covariant Thermodynamics and Relativity , 2011, 1107.1005.

[52]  H. H. Rugh,et al.  Dynamical Approach to Temperature , 1997, chao-dyn/9701026.

[53]  M. Villani,et al.  Hamiltonian Expression of Curvature Tensors in the York Canonical Basis: II) The Weyl Tensor, Weyl Scalars, the Weyl Eigenvalues and the Problem of the Observables of the Gravitational Field , 2014 .

[54]  T. Biró,et al.  About the temperature of moving bodies , 2009, 0905.1650.

[55]  L. Lusanna Canonical ADM Tetrad Gravity: from Metrological Inertial Gauge Variables to Dynamical Tidal Dirac observables , 2011, 1108.3224.

[56]  L. Lusanna,et al.  The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: III) The Post-Minkowskian N-Body Problem, its Post-Newtonian Limit in Non-Harmonic 3-Orthogonal Gauges and Dark Matter as an Inertial Effect , 2010, 1009.1794.

[57]  Werner Israel,et al.  Transient relativistic thermodynamics and kinetic theory , 1979 .

[58]  M. Apostol Non-inertial electromagnetic effects in matter. Gyromagnetic effect , 2012 .

[59]  P. Ván Kinetic equilibrium and relativistic thermodynamics , 2011, 1102.0323.

[60]  F. Jüttner Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie , 1911 .

[61]  M. A. Amato,et al.  A novel approach to the determination of equilibrium properties of classical Hamiltonian systems with long-range interactions , 2009 .

[62]  Conservation laws of inviscid non-isentropic compressible fluid flow in n > 1 spatial dimensions , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[63]  F. Becattini Thermodynamic equilibrium in relativity: four-temperature, Killing vectors and Lie derivatives , 2016, 1606.06605.

[64]  C. Cercignani,et al.  Stress and heat flux in non-inertial reference frames , 1997 .

[65]  D. Rischke,et al.  Dissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theory. , 2010, Physical review letters.

[66]  R. Hakim Remarks on Relativistic Statistical Mechanics. I , 1967 .

[67]  L. Dagdug,et al.  Manifestly covariant Jüttner distribution and equipartition theorem. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  M. Villani,et al.  Hamiltonian Expression of Curvature Tensors in the York Canonical Basis: I) The Riemann Tensor and Ricci Scalars , 2014 .

[69]  Nils Andersson,et al.  Relativistic Fluid Dynamics: Physics for Many Different Scales , 2006, Living Reviews in Relativity.

[70]  G. A. D. Parga,et al.  Redefined relativistic thermodynamics based on the Nakamura formalism , 2009 .

[71]  W. V. Leeuwen,et al.  Relativistic Kinetic Theory: Principles and Applications , 1980 .

[72]  N. Kampen,et al.  Lorentz-invariance of the distribution in phase space , 1969 .

[73]  L. Lusanna,et al.  Charged Particles and the Electro-Magnetic Field in Non-Inertial Frames of Minkowski Spacetime , 2008, 0812.3057.

[74]  AlbaDavid,et al.  The Einstein–Maxwell-particle system in the York canonical basis of ADM tetrad gravity. Part 1. The equations of motion in arbitrary Schwinger time gauges1 1This paper is one of three companion papers published in the same issue of Can. J. Phys. , 2012 .

[75]  N. Andersson,et al.  Variational multi-fluid dynamics and causal heat conductivity , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[76]  QUANTUM MECHANICS IN NONINERTIAL FRAMES WITH A MULTITEMPORAL QUANTIZATION SCHEME I: RELATIVISTIC PARTICLES , 2005, hep-th/0502194.

[77]  A. Bilandzic,et al.  Hydrodynamics and Flow , 2008, 0808.2684.

[78]  F. Jüttner Die Dynamik eines bewegten Gases in der Relativtheorie , 2022 .

[79]  The Rest-Frame Darwin Potential from the Lienard–Wiechert Solution in the Radiation Gauge , 2000, hep-th/0001046.

[80]  D. Alba,et al.  New directions in non-relativistic and relativistic rotational and multipole kinematics for N-body and continuous systems , 2005 .

[81]  T. Biró,et al.  Relativistic hydrodynamics – causality and stability , 2007, 0704.2039.

[82]  P. Romatschke New Developments in Relativistic Viscous Hydrodynamics , 2009, 0902.3663.

[83]  L. Horwitz,et al.  A manifestly covariant relativistic Boltzmann equation for the evolution of a system of events , 1989 .

[84]  S. Inutsuka,et al.  The relativistic kinetic dispersion relation: Comparison of the relativistic Bhatnagar–Gross–Krook model and Grad’s 14-moment expansion , 2010, 1006.2663.

[85]  Robert M. Strain Coordinates in the relativistic Boltzmann theory , 2010, 1011.5093.

[86]  P. Kovtun,et al.  Relativistic magnetohydrodynamics , 2017, 1703.08757.

[87]  G. Sewell Note on the relativistic thermodynamics of moving bodies , 2010, 1010.2045.

[88]  J. Stewart Non-Equilibrium Relativistic Kinetic Theory , 1971 .

[89]  F. Jüttner Die relativistische Quantentheorie des idealen Gases , 1928 .

[90]  Tadas K. Nakamura,et al.  Three Views of a Secret in Relativistic Thermodynamics , 2008, 0812.3725.

[91]  Cesar S. Lopez-Monsalvo,et al.  A consistent first-order model for relativistic heat flow , 2011, 1107.0165.

[92]  K. Hansen,et al.  On the concept of temperature for a small isolated system , 2001 .

[93]  Eric Poisson,et al.  The Motion of Point Particles in Curved Spacetime , 2004, Living reviews in relativity.

[94]  QUANTUM MECHANICS IN NONINERTIAL FRAMES WITH A MULTITEMPORAL QUANTIZATION SCHEME II: NONRELATIVISTIC PARTICLES , 2005, hep-th/0504060.

[95]  Hamiltonian relativistic two-body problem: center of mass and orbit reconstruction , 2006, hep-th/0610200.

[96]  B. Betz,et al.  Complete second-order dissipative fluid dynamics , 2009 .

[97]  H. Crater,et al.  Towards relativistic atomic physics. Part 1. The rest-frame instant form of dynamics and a canonical transformation for a system of charged particles plus the electro-magnetic field , 2008, 0806.2383.

[98]  C. K. Yuen Lorentz Transformation of Thermodynamic Quantities , 1970 .

[99]  L. Lusanna,et al.  The Einstein-Maxwell-Particle System: II) The Weak Field Approximation in the Non-Harmonic 3-Orthogonal Gauges and Hamiltonian Post-Minkowskian Gravity: the N-Body Problem and Gravitational Waves with Asymptotic Background , 2010, 1003.5143.

[100]  J. Mart́ın,et al.  Predictive relativistic mechanics of systems of N particles with spin. II. The electromagnetic interaction , 1980 .

[101]  D. Alba,et al.  Centers of mass and rotational kinematics for the relativistic N-body problem in the rest-frame instant form , 2002 .

[102]  H. Crater,et al.  Towards relativistic atomic physics. Part II. Collective and relative relativistic variables for a system of charged articles plus the electromagnetic field , 2008, 0811.0715.

[103]  E. Sudarshan,et al.  RELATIVISTIC INVARIANCE AND HAMILTONIAN THEORIES OF INTERACTING PARTICLES , 1963 .

[104]  D. Alba,et al.  CHARGED PARTICLES AND THE ELECTRO-MAGNETIC FIELD IN NONINERTIAL FRAMES OF MINKOWSKI SPACE–TIME II: "APPLICATIONS: ROTATING FRAMES, SAGNAC EFFECT, FARADAY ROTATION, WRAP-UP EFFECT" , 2010 .