From Relativistic Mechanics towards Relativistic Statistical Mechanics
暂无分享,去创建一个
[1] P. V'an. Internal energy in dissipative relativistic fluids , 2007, 0712.1437.
[2] Robert M. Strain. Global Newtonian Limit for the Relativistic Boltzmann Equation near Vacuum , 2010, SIAM J. Math. Anal..
[3] G. M. Kremer. On the kinetic theory of relativistic gases , 1997 .
[4] Wolfgang Baumjohann,et al. Relativistic transformation of phase-space distributions , 2011, 1105.2120.
[5] D. Alba,et al. GENERALIZED EULERIAN COORDINATES FOR RELATIVISTIC FLUIDS: HAMILTONIAN REST-FRAME INSTANT FORM, RELATIVE VARIABLES, ROTATIONAL KINEMATICS , 2002, hep-th/0209032.
[6] N. Kampen,et al. Relativistic Thermodynamics of Moving Systems , 1968 .
[7] H. Crater,et al. On the Relativistic Micro-Canonical Ensemble and Relativistic Kinetic Theory for N Relativistic Particles in Inertial and Non-Inertial Rest Frames , 2012, 1202.4667.
[8] P. Romatschke. Relativistic viscous fluid dynamics and non-equilibrium entropy , 2009, 0906.4787.
[9] Priou. Comparison between variational and traditional approaches to relativistic thermodynamics of dissipative fluids. , 1991, Physical review. D, Particles and fields.
[10] Peter Hanggi,et al. Relativistic Brownian Motion , 2008, 0812.1996.
[11] B. Betz,et al. Second order dissipative fluid dynamics from kinetic theory , 2010, 1012.5772.
[12] L. Horwitz,et al. Gibbs ensembles in relativistic classical and quantum mechanics , 1981 .
[13] L. Lusanna. Non-Inertial Frames in Special and General Relativity , 2013, 1310.4465.
[14] CNRS,et al. Statistical mechanics and dynamics of solvable models with long-range interactions , 2009, 0907.0323.
[15] R. Hakim. Introduction to Relativistic Statistical Mechanics: Classical and Quantum , 2011 .
[16] C. Giardinà,et al. Ergodic Properties of Microcanonical Observables , 1997, chao-dyn/9709015.
[17] Action functionals for relativistic perfect fluids , 1993, gr-qc/9304026.
[18] B. Boisseau,et al. Relativistic Boltzmann theory in D + 1 spacetime dimensions , 1989 .
[19] H. Crater,et al. The Semiclassical relativistic Darwin potential for spinning particles in the rest frame instant form: Two-body bound states with spin 1/2 constituents , 2001 .
[20] H. Touchette. The large deviation approach to statistical mechanics , 2008, 0804.0327.
[21] Lawrence Sklar,et al. Assumption and myth in physical theory , 1969 .
[22] P. Hänggi,et al. Thermal equilibrium and statistical thermometers in special relativity. , 2007, Physical review letters.
[23] A. Mangeney,et al. Relativistic Kinetic Equations Including Radiation Effects. I. Vlasov Approximation , 1968 .
[24] Paul Adrien Maurice Dirac,et al. Lectures on Quantum Mechanics , 2001 .
[25] L. Lusanna,et al. The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: I) The Equations of Motion in Arbitrary Schwinger Time Gauges , 2009, 0907.4087.
[26] R. Maartens. Causal Thermodynamics in Relativity , 1996, astro-ph/9609119.
[27] L. Lusanna. Canonical Gravity and Relativistic Metrology: from Clock Synchronization to Dark Matter as a Relativistic Inertial Effect , 2011, 1205.2481.
[28] Gonzalo Ares de Parga,et al. Relativistic Statistical Mechanics vs. Relativistic Thermodynamics , 2011, Entropy.
[29] E. Lehmann,et al. Covariant equilibrium statistical mechanics , 2006, math-ph/0602060.
[30] H. Crater,et al. Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics , 2009, 0907.1816.
[31] H. H. Rugh. A geometric, dynamical approach to thermodynamics , 1997, chao-dyn/9703013.
[32] A. Thyagaraja,et al. Plasma physics in noninertial frames , 2009 .
[33] E. Spiegel,et al. Causal relativistic fluid dynamics , 2011, 1107.0319.
[34] Theodore D. Drivas,et al. Cascades and Dissipative Anomalies in Relativistic Fluid Turbulence , 2017, 1704.03541.
[35] REVIEW: The Rest-Frame Instant Form of Metric Gravity , 2001, gr-qc/0101048.
[36] B. Carter,et al. Covariant theory of conductivity in ideal fluid or solid media , 1989 .
[37] J. G. Powles,et al. Temperature in the classical microcanonical ensemble , 2001 .
[38] L. Lusanna,et al. The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: II) The Weak Field Approximation in the 3-Orthogonal Gauges and Hamiltonian Post-Minkowskian Gravity: the N-Body Problem and Gravitational Waves with Asymptotic Background. , 2010 .
[39] F. Debbasch. Equilibrium distribution function of a relativistic dilute perfect gas , 2008 .
[40] A. Parvan. Lorentz transformations of the thermodynamic quantities , 2019, Annals of Physics.
[41] E. Gourgoulhon. AN INTRODUCTION TO RELATIVISTIC HYDRODYNAMICS , 2006, gr-qc/0603009.
[42] T. Matolcsi,et al. On the Momentum Distribution of Molecules of an Ideal Gas , 2022 .
[43] The N- and 1-Time Classical Descriptions of N-Body Relativistic Kinematics and the Electromagnetic Interaction , 1995, hep-th/9512070.
[44] L. Lusanna,et al. CHARGED PARTICLES AND THE ELECTRO-MAGNETIC FIELD IN NONINERTIAL FRAMES OF MINKOWSKI SPACE-TIME I: ADMISSIBLE 3 + 1 SPLITTINGS OF MINKOWSKI SPACE-TIME AND THE NONINERTIAL REST FRAMES , 2009, 0908.0213.
[45] Cesar S. Lopez-Monsalvo,et al. Thermal dynamics in general relativity , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[46] E. A. Cheremukhin,et al. On the definition of the microcanonical temperature of small weakly bound molecular clusters , 2010 .
[47] R. Balescu. Relativistic statistical thermodynamics , 1968 .
[48] P. Bergmann. Generalized Statistical Mechanics , 1951 .
[49] Duccio Fanelli,et al. Physics of Long-Range Interacting Systems , 2014 .
[50] D. Gross,et al. Microcanonical mean-field thermodynamics of self-gravitating and rotating systems. , 2002, Physical review letters.
[51] Cesar S. Lopez-Monsalvo. Covariant Thermodynamics and Relativity , 2011, 1107.1005.
[52] H. H. Rugh,et al. Dynamical Approach to Temperature , 1997, chao-dyn/9701026.
[53] M. Villani,et al. Hamiltonian Expression of Curvature Tensors in the York Canonical Basis: II) The Weyl Tensor, Weyl Scalars, the Weyl Eigenvalues and the Problem of the Observables of the Gravitational Field , 2014 .
[54] T. Biró,et al. About the temperature of moving bodies , 2009, 0905.1650.
[55] L. Lusanna. Canonical ADM Tetrad Gravity: from Metrological Inertial Gauge Variables to Dynamical Tidal Dirac observables , 2011, 1108.3224.
[56] L. Lusanna,et al. The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: III) The Post-Minkowskian N-Body Problem, its Post-Newtonian Limit in Non-Harmonic 3-Orthogonal Gauges and Dark Matter as an Inertial Effect , 2010, 1009.1794.
[57] Werner Israel,et al. Transient relativistic thermodynamics and kinetic theory , 1979 .
[58] M. Apostol. Non-inertial electromagnetic effects in matter. Gyromagnetic effect , 2012 .
[59] P. Ván. Kinetic equilibrium and relativistic thermodynamics , 2011, 1102.0323.
[60] F. Jüttner. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie , 1911 .
[61] M. A. Amato,et al. A novel approach to the determination of equilibrium properties of classical Hamiltonian systems with long-range interactions , 2009 .
[62] Conservation laws of inviscid non-isentropic compressible fluid flow in n > 1 spatial dimensions , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[63] F. Becattini. Thermodynamic equilibrium in relativity: four-temperature, Killing vectors and Lie derivatives , 2016, 1606.06605.
[64] C. Cercignani,et al. Stress and heat flux in non-inertial reference frames , 1997 .
[65] D. Rischke,et al. Dissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theory. , 2010, Physical review letters.
[66] R. Hakim. Remarks on Relativistic Statistical Mechanics. I , 1967 .
[67] L. Dagdug,et al. Manifestly covariant Jüttner distribution and equipartition theorem. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[68] M. Villani,et al. Hamiltonian Expression of Curvature Tensors in the York Canonical Basis: I) The Riemann Tensor and Ricci Scalars , 2014 .
[69] Nils Andersson,et al. Relativistic Fluid Dynamics: Physics for Many Different Scales , 2006, Living Reviews in Relativity.
[70] G. A. D. Parga,et al. Redefined relativistic thermodynamics based on the Nakamura formalism , 2009 .
[71] W. V. Leeuwen,et al. Relativistic Kinetic Theory: Principles and Applications , 1980 .
[72] N. Kampen,et al. Lorentz-invariance of the distribution in phase space , 1969 .
[73] L. Lusanna,et al. Charged Particles and the Electro-Magnetic Field in Non-Inertial Frames of Minkowski Spacetime , 2008, 0812.3057.
[74] AlbaDavid,et al. The Einstein–Maxwell-particle system in the York canonical basis of ADM tetrad gravity. Part 1. The equations of motion in arbitrary Schwinger time gauges1 1This paper is one of three companion papers published in the same issue of Can. J. Phys. , 2012 .
[75] N. Andersson,et al. Variational multi-fluid dynamics and causal heat conductivity , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[76] QUANTUM MECHANICS IN NONINERTIAL FRAMES WITH A MULTITEMPORAL QUANTIZATION SCHEME I: RELATIVISTIC PARTICLES , 2005, hep-th/0502194.
[77] A. Bilandzic,et al. Hydrodynamics and Flow , 2008, 0808.2684.
[78] F. Jüttner. Die Dynamik eines bewegten Gases in der Relativtheorie , 2022 .
[79] The Rest-Frame Darwin Potential from the Lienard–Wiechert Solution in the Radiation Gauge , 2000, hep-th/0001046.
[80] D. Alba,et al. New directions in non-relativistic and relativistic rotational and multipole kinematics for N-body and continuous systems , 2005 .
[81] T. Biró,et al. Relativistic hydrodynamics – causality and stability , 2007, 0704.2039.
[82] P. Romatschke. New Developments in Relativistic Viscous Hydrodynamics , 2009, 0902.3663.
[83] L. Horwitz,et al. A manifestly covariant relativistic Boltzmann equation for the evolution of a system of events , 1989 .
[84] S. Inutsuka,et al. The relativistic kinetic dispersion relation: Comparison of the relativistic Bhatnagar–Gross–Krook model and Grad’s 14-moment expansion , 2010, 1006.2663.
[85] Robert M. Strain. Coordinates in the relativistic Boltzmann theory , 2010, 1011.5093.
[86] P. Kovtun,et al. Relativistic magnetohydrodynamics , 2017, 1703.08757.
[87] G. Sewell. Note on the relativistic thermodynamics of moving bodies , 2010, 1010.2045.
[88] J. Stewart. Non-Equilibrium Relativistic Kinetic Theory , 1971 .
[89] F. Jüttner. Die relativistische Quantentheorie des idealen Gases , 1928 .
[90] Tadas K. Nakamura,et al. Three Views of a Secret in Relativistic Thermodynamics , 2008, 0812.3725.
[91] Cesar S. Lopez-Monsalvo,et al. A consistent first-order model for relativistic heat flow , 2011, 1107.0165.
[92] K. Hansen,et al. On the concept of temperature for a small isolated system , 2001 .
[93] Eric Poisson,et al. The Motion of Point Particles in Curved Spacetime , 2004, Living reviews in relativity.
[94] QUANTUM MECHANICS IN NONINERTIAL FRAMES WITH A MULTITEMPORAL QUANTIZATION SCHEME II: NONRELATIVISTIC PARTICLES , 2005, hep-th/0504060.
[95] Hamiltonian relativistic two-body problem: center of mass and orbit reconstruction , 2006, hep-th/0610200.
[96] B. Betz,et al. Complete second-order dissipative fluid dynamics , 2009 .
[97] H. Crater,et al. Towards relativistic atomic physics. Part 1. The rest-frame instant form of dynamics and a canonical transformation for a system of charged particles plus the electro-magnetic field , 2008, 0806.2383.
[98] C. K. Yuen. Lorentz Transformation of Thermodynamic Quantities , 1970 .
[99] L. Lusanna,et al. The Einstein-Maxwell-Particle System: II) The Weak Field Approximation in the Non-Harmonic 3-Orthogonal Gauges and Hamiltonian Post-Minkowskian Gravity: the N-Body Problem and Gravitational Waves with Asymptotic Background , 2010, 1003.5143.
[100] J. Mart́ın,et al. Predictive relativistic mechanics of systems of N particles with spin. II. The electromagnetic interaction , 1980 .
[101] D. Alba,et al. Centers of mass and rotational kinematics for the relativistic N-body problem in the rest-frame instant form , 2002 .
[102] H. Crater,et al. Towards relativistic atomic physics. Part II. Collective and relative relativistic variables for a system of charged articles plus the electromagnetic field , 2008, 0811.0715.
[103] E. Sudarshan,et al. RELATIVISTIC INVARIANCE AND HAMILTONIAN THEORIES OF INTERACTING PARTICLES , 1963 .
[104] D. Alba,et al. CHARGED PARTICLES AND THE ELECTRO-MAGNETIC FIELD IN NONINERTIAL FRAMES OF MINKOWSKI SPACE–TIME II: "APPLICATIONS: ROTATING FRAMES, SAGNAC EFFECT, FARADAY ROTATION, WRAP-UP EFFECT" , 2010 .