$L_{0}$ Gradient Projection

Minimizing <inline-formula> <tex-math notation="LaTeX">$L_{0}$ </tex-math></inline-formula> gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the <inline-formula> <tex-math notation="LaTeX">$L_{0}$ </tex-math></inline-formula> gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the <inline-formula> <tex-math notation="LaTeX">$L_{0}$ </tex-math></inline-formula> gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the <inline-formula> <tex-math notation="LaTeX">$L_{0}$ </tex-math></inline-formula> gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the <inline-formula> <tex-math notation="LaTeX">$L_{0}$ </tex-math></inline-formula> gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the <inline-formula> <tex-math notation="LaTeX">$L_{0}$ </tex-math></inline-formula> gradient is less than a user-given parameter <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>. This strategy is much more intuitive than the <inline-formula> <tex-math notation="LaTeX">$L_{0}$ </tex-math></inline-formula> gradient minimization because the parameter <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> has a clear meaning: the <inline-formula> <tex-math notation="LaTeX">$L_{0}$ </tex-math></inline-formula> gradient value of the output image itself, so that one can directly impose a desired degree of flatness by <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>. We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.

[1]  Mohamed-Jalal Fadili,et al.  Total Variation Projection With First Order Schemes , 2011, IEEE Transactions on Image Processing.

[2]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[3]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[4]  Zhi-Quan Luo,et al.  Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems , 2014, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Lei He,et al.  Mesh denoising via L0 minimization , 2013, ACM Trans. Graph..

[6]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[7]  Gordon Wetzstein,et al.  Fast and flexible convolutional sparse coding , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Michael S. Brown,et al.  Fast and Effective L0 Gradient Minimization by Region Fusion , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[9]  R. Chan,et al.  Minimization and parameter estimation for seminorm regularization models with I-divergence constraints , 2013 .

[10]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[12]  XuYi,et al.  Image smoothing via L0 gradient minimization , 2011 .

[13]  Shunsuke Ono,et al.  Signal Recovery With Certain Involved Convex Data-Fidelity Constraints , 2015, IEEE Transactions on Signal Processing.

[14]  Shunsuke Ono Edge-preserving filtering by projection onto L0 gradient constraint , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[16]  Alessio Del Bue,et al.  Sparse representation classification with manifold constraints transfer , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Shunsuke Ono,et al.  Hierarchical Convex Optimization With Primal-Dual Splitting , 2015, IEEE Transactions on Signal Processing.

[18]  Lingling Li,et al.  Improved L0 Gradient Minimization with L1 Fidelity for Image Smoothing , 2015, PloS one.

[19]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[20]  S. Pei,et al.  Edge-preserving image decomposition using L1 fidelity with L0 gradient , 2012, SIGGRAPH Asia Technical Briefs.

[21]  Jian Sun,et al.  Guided Image Filtering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Cédric Févotte,et al.  Alternating direction method of multipliers for non-negative matrix factorization with the beta-divergence , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[23]  Shunsuke Ono,et al.  Second-order total Generalized Variation constraint , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24]  James T. Kwok,et al.  Asynchronous Distributed ADMM for Consensus Optimization , 2014, ICML.

[25]  Michael Unser,et al.  Joint image reconstruction and segmentation using the Potts model , 2014, 1405.5850.

[26]  Patrick L. Combettes,et al.  Image restoration subject to a total variation constraint , 2004, IEEE Transactions on Image Processing.

[27]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[28]  Xinguo Liu,et al.  Feature-preserving fi ltering with L 0 gradient minimization , 2014 .

[29]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[30]  Shunsuke Ono,et al.  Color-Line Regularization for Color Artifact Removal , 2016, IEEE Transactions on Computational Imaging.

[31]  Manuel Menezes de Oliveira Neto,et al.  Domain transform for edge-aware image and video processing , 2011, ACM Trans. Graph..

[32]  Guoyin Li,et al.  Global Convergence of Splitting Methods for Nonconvex Composite Optimization , 2014, SIAM J. Optim..

[33]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[34]  Andreas Weinmann,et al.  Jump-Sparse and Sparse Recovery Using Potts Functionals , 2013, IEEE Transactions on Signal Processing.

[35]  Soo-Chang Pei,et al.  Visual Enhancement Using Constrained L0 Gradient Image Decomposition for Low Backlight Displays , 2012, IEEE Signal Processing Letters.

[36]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Nelly Pustelnik,et al.  Epigraphical Projection and Proximal Tools for Solving Constrained Convex Optimization Problems: Part I , 2012, ArXiv.

[38]  Ming-Hsuan Yang,et al.  Deblurring Text Images via L0-Regularized Intensity and Gradient Prior , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Zeev Farbman,et al.  Edge-preserving decompositions for multi-scale tone and detail manipulation , 2008, ACM Trans. Graph..

[40]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[41]  Ming Zeng,et al.  Feature-preserving filtering with L0 gradient minimization , 2014, Comput. Graph..

[42]  李玲玲 Improved L0 Gradient Minimization with L1 Fidelity for Image Smoothing , 2015 .

[43]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Chao Yang,et al.  Alternating direction methods for classical and ptychographic phase retrieval , 2012 .