A three-step decomposition method for the evolutionary design of sequential logic circuits

Evolvable hardware (EHW) refers to an automatic circuit design approach, which employs evolutionary algorithms (EAs) to generate the configurations of the programmable devices. The scalability is one of the main obstacles preventing EHW from being applied to real-world applications. Several techniques have been proposed to overcome the scalability problem. One of them is to decompose the whole circuit into several small evolvable sub-circuits. However, current techniques for scalability are mainly used to evolve combinational logic circuits. In this paper, in order to decompose a sequential logic circuit, the state decomposition, output decomposition and input decomposition are united as a three-step decomposition method (3SD). A novel extrinsic EHW system, namely 3SD–ES, which combines the 3SD method with the (μ, λ) ES (evolution strategy), is proposed, and is used for the evolutionary designing of larger sequential logic circuits. The proposed extrinsic EHW system is tested extensively on sequential logic circuits taken from the Microelectronics Center of North Carolina (MCNC) benchmark library. The results demonstrate that 3SD–ES has much better performance in terms of scalability. It enables the evolutionary designing of larger sequential circuits than have ever been evolved before.

[1]  Tatiana Kalganova,et al.  A Novel Genetic Algorithm for Evolvable Hardware , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[2]  Delon Levi,et al.  HereBoy: a fast evolutionary algorithm , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[3]  Yuanxiang Li,et al.  An Intrinsic Evolvable Hardware Based on Multiplexer Module Array , 2007, ICES.

[4]  Adrian Stoica,et al.  Adaptive and Evolvable Hardware - A Multifaceted Analysis , 2007, Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007).

[5]  Julian F. Miller,et al.  Designing Electronic Circuits Using Evolutionary Algorithms. Arithmetic Circuits: A Case Study , 2007 .

[6]  Prabhas Chongstitvatana,et al.  Synthesis of Synchronous Sequential Logic Circuits from Partial Input/Output Sequences , 1998, ICES.

[7]  David Jackson,et al.  Partitioned Incremental Evolution of Hardware Using Genetic Programming , 2008, EuroGP.

[8]  Pauline C. Haddow,et al.  Evolving Redundant Structures for Reliable Circuits - Lessons Learned , 2007, Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007).

[9]  Per Kristian Lehre,et al.  Evolved digital circuits and genome complexity , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[10]  Julian Francis Miller,et al.  Towards the automatic design of more efficient digital circuits , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[11]  Jim Tørresen,et al.  A Divide-and-Conquer Approach to Evolvable Hardware , 1998, ICES.

[12]  Julian Francis Miller,et al.  Scalability problems of digital circuit evolution evolvability and efficient designs , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[13]  A. H. Aguirre,et al.  AUTOMATED DESIGN OF COMBINATIONAL LOGIC CIRCUITS USING GENETIC ALGORITHMS , 2022 .

[14]  Hazem M. Abbas,et al.  Combinational circuit design using evolutionary algorithms , 2003, CCECE 2003 - Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436).

[15]  Tatiana Kalganova,et al.  Bidirectional incremental evolution in extrinsic evolvable hardware , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[16]  Vu Duong,et al.  Evolution of analog circuits on field programmable transistor arrays , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[17]  Siamak Talebi,et al.  A fast evolutionary algorithm in codebook design , 2005 .

[18]  Johannes Schemmel,et al.  A Modular Framework for the Evolution of Circuits on Configurable Transistor Array Architectures. , 2006, First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06).

[19]  Kenji Toda,et al.  Real-world applications of analog and digital evolvable hardware , 1999, IEEE Trans. Evol. Comput..

[20]  Marco D. Santambrogio,et al.  Evolvable Hardware: A Functional Level Evolution Framework Based on ImpulseC , 2007, ERSA.

[21]  John C. Gallagher,et al.  A family of compact genetic algorithms for intrinsic evolvable hardware , 2004, IEEE Transactions on Evolutionary Computation.

[22]  Tiziano Villa,et al.  An FSM Reengineering Approach to Sequential Circuit Synthesis by State Splitting , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[23]  A. P. Shanthi,et al.  Evolution of asynchronous sequential circuits , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[24]  Jin Wang,et al.  Implementing Multi-VRC Cores to Evolve Combinational Logic Circuits in Parallel , 2007, ICES.

[25]  Tatiana Kalganova,et al.  Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[26]  P. Thomson,et al.  Discovering novel digital circuits using evolutionary techniques , 1998 .

[27]  Alan D. Christiansen,et al.  Towards automated evolutionary design of combinational circuits , 2000, Comput. Electr. Eng..

[28]  Enrico Macii,et al.  Designing low-power circuits: practical recipes , 2001 .

[29]  Xin Yao,et al.  Promises and challenges of evolvable hardware , 1996, IEEE Trans. Syst. Man Cybern. Part C.

[30]  Lukás Sekanina,et al.  Fitness Landscape Analysis and Image Filter Evolution Using Functional-Level CGP , 2007, EuroGP.

[31]  Prabhas Chongstitvatana,et al.  An On-line Evolvable Hardware for Learning Finite-State Machine , 2001 .

[32]  E. Stomeo,et al.  Generalized Disjunction Decomposition for Evolvable Hardware , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[33]  H.M. Abbas,et al.  Synchronous sequential circuits design using evolutionary algorithms , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[34]  Jie Li,et al.  Adaptive Salt-&-Pepper Noise Removal: A Function Level Evolution based Approach , 2008, 2008 NASA/ESA Conference on Adaptive Hardware and Systems.

[35]  TingTing Hwang,et al.  Low power realization of finite state machines—a decomposition approach , 1996, TODE.

[36]  Jin Wang,et al.  Design and implementation of a virtual reconfigurable architecture for different applications of intrinsic evolvable hardware , 2008, IET Comput. Digit. Tech..

[37]  Julian Francis Miller,et al.  Cartesian genetic programming , 2010, GECCO.

[38]  Andy M. Tyrrell,et al.  Evolutionary algorithm for the promotion of evolvable hardware , 2004 .

[39]  Johannes Schemmel,et al.  A CMOS FPTA chip for intrinsic hardware evolution of analog electronic circuits , 2001, Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001.

[40]  Mihai Oltean,et al.  Solving the even-n-parity problems using Best SubTree Genetic Programming , 2007, Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007).

[41]  Lukás Sekanina,et al.  Hardware Accelerators for Cartesian Genetic Programming , 2008, EuroGP.

[42]  G. De Micheli,et al.  Finite-state machine partitioning for low power , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[43]  Youren Wang,et al.  Research on Fault-Tolerance of Analog Circuits Based on Evolvable Hardware , 2007, ICES.

[44]  Lukás Sekanina,et al.  Evolutionary Design of Gate-Level Polymorphic Digital Circuits , 2005, EvoWorkshops.

[45]  Tatiana Kalganova,et al.  Evolutionary Algorithms and Theirs Use in the Design of Sequential Logic Circuits , 2004, Genetic Programming and Evolvable Machines.

[46]  Tatiana Kalganova,et al.  On evolution of relatively large combinational logic circuits , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[47]  Peter J. Bentley,et al.  Bias and scalability in evolutionary development , 2005, GECCO '05.

[48]  Tetsuya Higuchi,et al.  Adaptive Equalization of Digital Communication Channels Using Evolvable Hardware , 1996, ICES.

[49]  Peter J. Bentley,et al.  Development brings scalability to hardware evolution , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[50]  Chi-Ying Tsui,et al.  Finite state machine partitioning for low power , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[51]  Isamu Kajitani,et al.  Hardware Evolution at Function Level , 1996, PPSN.

[52]  Garrison W. Greenwood Attaining Fault Tolerance through Self-adaption: The Strengths and Weaknesses of Evolvable Hardware Approaches , 2008, WCCI.

[53]  Prabhas Chongstitvatana,et al.  Improving correctness of finite-state machine synthesis from multiple partial input/output sequences , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[54]  A. Sumathi,et al.  Digital Filter Design Using Evolvable Hardware Chip for Image Enhancement , 2006, ICIC.

[55]  Lukás Sekanina,et al.  Towards evolvable IP cores for FPGAs , 2003, NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings..