Structure and vibrational properties of the dominant O-H center in β-Ga2O3

Hydrogen has a strong influence on the electrical properties of transparent conducting oxides where it can give rise to shallow donors and can passivate deep compensating defects. We have carried out infrared absorption experiments on H- and D-doped β-Ga2O3 that involve temperature- and polarization-dependent effects as well as relative H- and D-concentrations to probe the defect structures that hydrogen can form. The results of analysis of these data, coupled with detailed theoretical calculations, show that the dominant O-H vibrational line observed at 3437 cm−1 for hydrogenated Ga2O3 is due to a relaxed VGa-2H center.

[1]  G. Svensson,et al.  A Reinvestigation of β-Gallium Oxide , 1996 .

[2]  K. Nakajima,et al.  Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing , 2008 .

[3]  S. Geller,et al.  Crystal Structure of β‐Ga2O3 , 1960 .

[4]  Masataka Higashiwaki,et al.  Guest Editorial: The dawn of gallium oxide microelectronics , 2018 .

[5]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[6]  F. Bechstedt,et al.  Dipole analysis of the dielectric function of color dispersive materials: Application to monoclinic Ga 2 O 3 , 2016, 1601.07892.

[7]  S. Yamakoshi,et al.  Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals , 2015, 1512.08590.

[8]  W. Fowler,et al.  Small polaron characteristics of an OD center in TiO2studied by infrared spectroscopy , 2012 .

[9]  W. Lambrecht,et al.  Quasiparticle self-consistent GW band structure of β-Ga2O3 and the anisotropy of the absorption onset , 2017 .

[10]  Xutang Tao,et al.  Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics , 2017 .

[11]  N. Giles,et al.  Gallium vacancies in β-Ga2O3 crystals , 2017 .

[12]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[13]  Ravindra Pandey,et al.  Ab initio study of high pressure phase transition in GaN , 1994 .

[14]  Stephen J. Pearton,et al.  High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3 , 2017 .

[15]  S. J. Pearton,et al.  Perspective—Opportunities and Future Directions for Ga2O3 , 2017 .

[16]  Y. Kumagai,et al.  Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic beta-Ga2O3 , 2017, 1704.06711.

[17]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[18]  Hideo Hosono,et al.  Deep-ultraviolet transparent conductive β-Ga2O3 thin films , 2000 .

[19]  M. Islam,et al.  Ultrawide‐Bandgap Semiconductors: Research Opportunities and Challenges , 2017 .

[20]  Philippe Goldner,et al.  Direct measurement of the dielectric frame rotation of monoclinic crystals as a function of the wavelength , 2014 .

[21]  W. Fowler,et al.  Vibrational properties of the H-N-H complex in dilute III-N-V alloys : Infrared spectroscopy and density functional theory , 2008 .

[22]  Joel B. Varley,et al.  Oxygen vacancies and donor impurities in β-Ga2O3 , 2010 .

[23]  A. Janotti,et al.  Hydrogenated cation vacancies in semiconducting oxides , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Deák Péter,et al.  Choosing the correct hybrid for defect calculations: A case study on intrinsic carrier trapping in .BETA.-Ga2O3 , 2017 .

[25]  Phil D. C. King,et al.  Observation of shallow-donor muonium in Ga2O3: Evidence for hydrogen-induced conductivity , 2010 .

[26]  W. Fowler,et al.  Hydrogen impurities and shallow donors in SnO2 studied by infrared spectroscopy , 2011 .

[27]  E. Bellotti,et al.  Migration mechanisms and diffusion barriers of vacancies in Ga 2 O 3 , 2017 .

[28]  Peter L. Walters,et al.  Key to understanding interstitial H2 in Si. , 2002, Physical review letters.

[29]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[30]  Y. Kumagai,et al.  State-of-the-art technologies of gallium oxide power devices , 2017 .

[31]  Stephen J. Pearton,et al.  A review of Ga2O3 materials, processing, and devices , 2018 .

[32]  Michael Stavola,et al.  Identification of an OH-Li center in ZnO: Infrared absorption spectroscopy and density functional theory , 2006 .

[33]  F. Bechstedt,et al.  Dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 0.5–8.5 eV , 2015, 1507.05401.

[34]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[35]  Hess,et al.  Hartree-Fock study of phase changes in ZnO at high pressure. , 1993, Physical review. B, Condensed matter.

[36]  M. Baldini,et al.  Electrical compensation by Ga vacancies in Ga{sub 2}O{sub 3} thin films , 2015 .

[37]  Manfred Martin,et al.  Ab initio calculations on the defect structure of β-Ga 2 O 3 , 2013 .