Simultaneous strategies for data reconciliation and gross error detection of nonlinear systems

[1]  Harold Jeffreys,et al.  An Alternative to the Rejection of Observations , 1932 .

[2]  H. Britt,et al.  The Estimation of Parameters in Nonlinear, Implicit Models , 1973 .

[3]  R. H. Fariss,et al.  An efficient computational technique for generalized application of maximum likelihood to improve correlation of experimental data , 1979 .

[4]  John W. Gorman,et al.  Statistical analysis of constrained data sets , 1980 .

[5]  C. M. Crowe,et al.  Reconciliation of process flow rates by matrix projection. Part II: The nonlinear case , 1983 .

[6]  Lorenz T. Biegler,et al.  Improved infeasible path optimization for sequential modular simulators—II: the optimization algorithm , 1985 .

[7]  Ajit C. Tamhane,et al.  Data Reconciliation and Gross Error Detection in Chemical Process Networks , 1985 .

[8]  R. Serth,et al.  Gross error detection and data reconciliation in steam-metering systems , 1986 .

[9]  C. F. Shewchuk,et al.  Reconciliation of process data with process simulation , 1986 .

[10]  Richard S.H. Mah,et al.  Evaluation of schemes for detecting and identifying gross errors in process data , 1987 .

[11]  R. Fletcher,et al.  Hybrid Methods for Nonlinear Least Squares , 1987 .

[12]  L. Biegler,et al.  Large-scale decomposition for successive quadratic programming , 1988 .

[13]  C. C. David Pai,et al.  Application of broyden's method to reconciliation of nonlinearly constrained data , 1988 .

[14]  Richard S.H. Mah,et al.  Treatment of general steady state process models in gross error identification , 1989 .

[15]  L. Biegler,et al.  Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems , 1991 .