An analog VLSI chip emulating polarization vision of octopus retina

Biological systems provide a wealth of information which form the basis for human-made artificial systems. In this work, the visual system of Octopus is investigated and its polarization sensitivity mimicked. While in actual Octopus retina, polarization vision is mainly based on the orthogonal arrangement of its photoreceptors, our implementation uses a birefringent micropolarizer made of YVO/sub 4/ and mounted on a CMOS chip with neuromorphic circuitry to process linearly polarized light. Arranged in an 8/spl times/5 array with two photodiodes per pixel, each consuming typically 10 /spl mu/W, this circuitry mimics both the functionality of individual Octopus retina cells by computing the state of polarization and the interconnection of these cells through a bias-controllable resistive network.

[1]  M. J. Wells,et al.  RETINAL ORIENTATION AND THE DISCRIMINATION OF POLARIZED LIGHT BY OCTOPUSES , 1961 .

[2]  K. Karita,et al.  Discrimination of horizontal and vertical planes of polarized light by the cephalopod retina. , 1966, The Japanese journal of physiology.

[3]  A. Andreou,et al.  Polarization imaging: principles and integrated polarimeters , 2002 .

[4]  Shih-Chii Liu,et al.  Analog VLSI: Circuits and Principles , 2002 .

[5]  N. Sutherland,et al.  The Visual System of Octopus: (3) Theories of Shape Discrimination in Octopus , 1960, Nature.

[6]  Albert H. Titus,et al.  An algorithm for the AVLSI implementation of the cephalopod retina and visual system , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[7]  S. Laughlin,et al.  Dichroism and absorption by photoreceptors , 1975, Journal of comparative physiology.

[8]  T. Cronin,et al.  The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle. , 2001, The Journal of experimental biology.

[9]  Zaven Kalayjian,et al.  1D polarisation contrast retina , 1997 .

[10]  K Motokawa,et al.  An investigation of the lateral spread of potentials in the octopus retina. , 1965, Vision research.

[11]  Misha Mahowald,et al.  A silicon model of early visual processing , 1993, Neural Networks.

[12]  N Shashar,et al.  Polarization contrast vision in Octopus. , 1996, The Journal of experimental biology.

[13]  Andreas G. Andreou,et al.  A Polarization Contrast Retina That Uses Patterned Iodine-Doped PVA Film , 1996 .

[14]  M. F. Moody,et al.  The Visual System of Octopus: (2) Discrimination of Polarized Light by Octopus , 1960, Nature.

[15]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[16]  N. Sutherland,et al.  Theories of Shape Discrimination in Octopus , 1960, Nature.

[17]  H. Saibil,et al.  An ordered membrane-cytoskeleton network in squid photoreceptor microvilli. , 1982, Journal of molecular biology.

[18]  J. Z. YOUNG,et al.  The Visual System of Octopus : (1)Regularities in the Retina and Optic Lobes of Octopus in Relation to Form Discrimination , 1960, Nature.

[19]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[20]  Zaven Kalayjian,et al.  A Polarization Contrast Retina Using Patterned Iodine-doped PVA Film , 1996, ESSCIRC '96: Proceedings of the 22nd European Solid-State Circuits Conference.

[21]  M. F. Moody,et al.  The discrimination of polarized light by Octopus: a behavioural and morphological study , 1961, Zeitschrift für vergleichende Physiologie.

[22]  Carver A. Mead,et al.  Analog VLSI Phototransduction by continuous-time, adaptive, logarithmic photoreceptor circuits , 1995 .

[23]  J B Messenger,et al.  The inability of Octopus vulgaris to discriminate monocularly between oblique rectangles. , 1971, The International journal of neuroscience.

[24]  Andreas G. Andreou,et al.  A silicon retina for polarization contrast vision , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[25]  G. D. Boyd,et al.  Second-Harmonic Generation of Light with Double Refraction , 1965 .

[26]  R Wehner,et al.  Polarized-light navigation by insects. , 1976, Scientific American.

[27]  Tobias Delbrück,et al.  Investigations of analog VLSI visual transduction and motion processing , 1993 .

[28]  T. Cronin,et al.  Polarization vision in cuttlefish in a concealed communication channel? , 1996, The Journal of experimental biology.

[29]  Andreas G. Andreou,et al.  Integrated imaging linear polarimeter , 1999 .

[30]  John Zachary Young,et al.  The retina of cephalopods and its degeneration after optic nerve section , 1962, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[31]  M F MOODY,et al.  Discrimination of polarized light by octopus. , 1960, Nature.