WENO Interpolation-Based and Upwind-Biased Free-Stream Preserving Nonlinear Schemes

[1]  Arnab Kumar De,et al.  Analysis of a new high resolution upwind compact scheme , 2006, J. Comput. Phys..

[2]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[3]  Xiaogang Deng,et al.  A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law , 2015 .

[4]  P. D. Thomas,et al.  Navier-Stokes simulation of three-dimensional hypersonic equilibriumflows with ablation , 1990 .

[5]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[6]  Rong Wang,et al.  A New Mapped Weighted Essentially Non-oscillatory Scheme , 2012, J. Sci. Comput..

[7]  Pengxin Liu,et al.  Piecewise Polynomial Mapping Method and Corresponding WENO Scheme with Improved Resolution , 2015 .

[8]  Huayong Liu,et al.  Geometric conservation law and applications to high-order finite difference schemes with stationary grids , 2011, J. Comput. Phys..

[9]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[10]  Sergio Pirozzoli,et al.  On the spectral properties of shock-capturing schemes , 2006, J. Comput. Phys..

[11]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[12]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[13]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[14]  Tetuya Kawamura,et al.  New higher-order upwind scheme for incompressible Navier-Stokes equations , 1985 .

[15]  M. Pino Martín,et al.  Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence , 2007, J. Comput. Phys..

[16]  Hiroshi Maekawa,et al.  A class of high-order dissipative compact schemes , 1996 .

[17]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[18]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[19]  Xiaogang Deng,et al.  Developing high-order weighted compact nonlinear schemes , 2000 .

[20]  Sanjiva K. Lele,et al.  High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows , 2017, J. Comput. Phys..

[21]  T. Nonomura,et al.  Symmetric-conservative metric evaluations for higher-order finite difference scheme with the GCL identities on three-dimensional moving and deforming mesh , 2012 .

[22]  H. C. Yee Upwind and Symmetric Shock-Capturing Schemes , 1987 .

[23]  Dong Sun,et al.  A Fourth-Order Symmetric WENO Scheme with Improved Performance by New Linear and Nonlinear Optimizations , 2017, J. Sci. Comput..

[24]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[25]  Taku Nonomura,et al.  Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids , 2010 .

[26]  Chi-Wang Shu,et al.  Development of nonlinear weighted compact schemes with increasingly higher order accuracy , 2008, J. Comput. Phys..

[27]  Taku Nonomura,et al.  Robust explicit formulation of weighted compact nonlinear scheme , 2013 .

[28]  Wai-Sun Don,et al.  High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws , 2011, J. Comput. Phys..

[29]  Bruno Costa,et al.  An improved WENO-Z scheme , 2016, J. Comput. Phys..