Developments of Mixed and Problem-Adapted BEM-Based FEM

In the final chapter some extensions and improvements of the BEM-based FEM are discussed which have not been addressed so far. In particular, the focus lies on two topics: The use of the method within mixed finite element formulations and the generalization of the construction of basis functions to polyhedral elements with polygonal faces in 3D with an application to convection-dominated problems.

[1]  Mohamed S. Ebeida,et al.  Uniform Random Voronoi Meshes , 2011, IMR.

[2]  Sergej Rjasanow,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Fem with Trefftz Trial Functions on Polyhedral Elements Fem with Trefftz Trial Functions on Polyhedral Elements Fem with Trefftz Trial Functions on Polyhedral Elements , 2022 .

[3]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[4]  Martin Stynes,et al.  On the Stability of Residual-Free Bubbles for Convection-Diffusion Problemsand their Approximation by a Two-Level Finite Element Method. , 1997 .

[5]  Alessandro Russo,et al.  Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems , 1998 .

[6]  Clemens Hofreither,et al.  FETI Solvers for Non-standard Finite Element Equations Based on Boundary Integral Operators , 2014 .

[7]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[8]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[9]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[10]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[11]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[12]  L. D. Marini,et al.  A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems , 1999 .

[13]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[14]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[15]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[16]  Natalia Kopteva,et al.  Shishkin meshes in the numerical solution of singularly perturbed differential equations , 2010 .

[17]  Dan Gordon,et al.  Journal of Computational and Applied Mathematics Row Scaling as a Preconditioner for Some Nonsymmetric Linear Systems with Discontinuous Coefficients , 2022 .

[18]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[19]  Yalchin Efendiev,et al.  Mixed FEM for Second Order Elliptic Problems on Polygonal Meshes with BEM-Based Spaces , 2013, LSSC.

[20]  Torsten Linss,et al.  Layer-adapted meshes for reaction-convection-diffusion problems , 2010 .

[21]  Clemens Hofreither,et al.  Convection‐adapted BEM‐based FEM , 2015, 1502.05954.

[22]  Jérôme Droniou,et al.  Non-coercive Linear Elliptic Problems , 2002 .

[23]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[24]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[25]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[26]  Ulrich Langer,et al.  From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes , 2009 .

[27]  G. I. Shishkin,et al.  A difference scheme for a singularly perturbed equation of parabolic type with discontinuous boundary conditions , 1990 .

[28]  Joseph E. Pasciak,et al.  Using finite element tools in proving shift theorems for elliptic boundary value problems , 2003, Numer. Linear Algebra Appl..

[29]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[30]  Mohamed S. Ebeida,et al.  A Simple Algorithm for Maximal Poisson‐Disk Sampling in High Dimensions , 2012, Comput. Graph. Forum.

[31]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[32]  Ulrich Langer,et al.  A Non-standard Finite Element Method Based on Boundary Integral Operators , 2011, LSSC.

[33]  Lourenço Beirão da Veiga,et al.  H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.

[34]  Cameron Talischi,et al.  A Family of H(div) Finite Element Approximations on Polygonal Meshes , 2015, SIAM J. Sci. Comput..

[35]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[36]  Clemens Hofreither,et al.  A Non‐standard Finite Element Method for Convection‐Diffusion‐Reaction Problems on Polyhedral Meshes , 2011 .

[37]  Y. Kuznetsov,et al.  Mixed Finite Element Method on Polygonal and Polyhedral Meshes , 2003 .

[38]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[39]  Chandrajit L. Bajaj,et al.  Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes , 2014, Comput. Methods Appl. Math..

[40]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.