A compact Cascade–Cas3 system for targeted genome engineering

[1]  J. Bina,et al.  Complete Genome Sequence of Klebsiella pneumoniae Strain ATCC 43816 , 2021, Microbiology Resource Announcements.

[2]  Junjiu Huang,et al.  Repurposing type I–F CRISPR–Cas system as a transcriptional activation tool in human cells , 2020, Nature Communications.

[3]  Rodolphe Barrangou,et al.  Characterization and applications of Type I CRISPR-Cas systems. , 2020, Biochemical Society transactions.

[4]  H. Morisaka,et al.  CRISPR-Cas3 induces broad and unidirectional genome editing in human cells , 2019, Nature Communications.

[5]  Leslie S. Edwards,et al.  Harnessing type I CRISPR–Cas systems for genome engineering in human cells , 2019, Nature Biotechnology.

[6]  H. Cao,et al.  Native CRISPR-Cas-Mediated Genome Editing Enables Dissecting and Sensitizing Clinical Multidrug-Resistant P. aeruginosa. , 2019, Cell reports.

[7]  R. Barrangou,et al.  The repurposing of type I-E CRISPR-Cascade for gene activation in plants , 2019, Communications Biology.

[8]  Adair L. Borges,et al.  Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription , 2019, Cell.

[9]  L. Steinmetz,et al.  Biological plasticity rescues target activity in CRISPR knock outs , 2019, Nature Methods.

[10]  R. Barrangou,et al.  Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus , 2019, Proceedings of the National Academy of Sciences.

[11]  Chase L. Beisel,et al.  Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells , 2019, Nature Biotechnology.

[12]  Peter L. Freddolino,et al.  Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas. , 2019, Molecular cell.

[13]  R. Barrangou,et al.  Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in Streptococcus thermophilus. , 2019, FEMS microbiology letters.

[14]  D. Mathews,et al.  CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation , 2019, Nature Communications.

[15]  Yanli Zheng,et al.  Characterization and repurposing of the endogenous Type I-F CRISPR–Cas system of Zymomonas mobilis for genome engineering , 2019, bioRxiv.

[16]  J. Keith Joung,et al.  Discovery of widespread type I and type V CRISPR-Cas inhibitors , 2018, Science.

[17]  D. Denver,et al.  Comparative Genomic Analysis of 130 Bacteriophages Infecting Bacteria in the Genus Pseudomonas , 2018, Front. Microbiol..

[18]  István Nagy,et al.  Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance , 2018, Proceedings of the National Academy of Sciences.

[19]  Adair L. Borges,et al.  Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity , 2018, Cell.

[20]  H. Xiang,et al.  Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon. , 2017, Journal of genetics and genomics = Yi chuan xue bao.

[21]  Nevan J. Krogan,et al.  Inhibition of CRISPR-Cas9 with Bacteriophage Proteins , 2017, Cell.

[22]  Tamás Fehér,et al.  System-level genome editing in microbes. , 2016, Current opinion in microbiology.

[23]  J. Goldberg,et al.  The Escherichia coli rhaSR-PrhaBAD Inducible Promoter System Allows Tightly Controlled Gene Expression over a Wide Range in Pseudomonas aeruginosa , 2016, Applied and Environmental Microbiology.

[24]  Megan L Hochstrasser,et al.  DNA Targeting by a Minimal CRISPR RNA-Guided Cascade. , 2016, Molecular cell.

[25]  R. Barrangou,et al.  Applications of CRISPR technologies in research and beyond , 2016, Nature Biotechnology.

[26]  Murray Moo-Young,et al.  Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium , 2016, Scientific Reports.

[27]  D. Bikard,et al.  Consequences of Cas9 cleavage in the chromosome of Escherichia coli , 2016, Nucleic acids research.

[28]  Peter C. Fineran,et al.  CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia , 2016, Microbiology.

[29]  J. Doudna,et al.  Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System , 2015, Cell.

[30]  Yan Zhang,et al.  Harnessing Type I and Type III CRISPR-Cas systems for genome editing , 2015, Nucleic acids research.

[31]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[32]  R. Barrangou,et al.  CRISPR-based screening of genomic island excision events in bacteria , 2015, Proceedings of the National Academy of Sciences.

[33]  Harry L. T. Mobley,et al.  Genome-Wide Identification of Klebsiella pneumoniae Fitness Genes during Lung Infection , 2015, mBio.

[34]  Christopher A. Voigt,et al.  Targeted DNA degradation using a CRISPR device stably carried in the host genome , 2015, Nature Communications.

[35]  M. Whiteley,et al.  Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum , 2015, Proceedings of the National Academy of Sciences.

[36]  Weisheng Wu,et al.  Complete Genome Sequence of Klebsiella pneumoniae Strain ATCC 43816 KPPR1, a Rifampin-Resistant Mutant Commonly Used in Animal, Genetic, and Molecular Biology Studies , 2014, Genome Announcements.

[37]  Chase L. Beisel,et al.  Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems , 2014, mBio.

[38]  Scott Bailey,et al.  In Vitro Reconstitution of an Escherichia coli RNA-guided Immune System Reveals Unidirectional, ATP-dependent Degradation of DNA Target* , 2013, The Journal of Biological Chemistry.

[39]  Peter C. Fineran,et al.  Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands , 2013, PLoS genetics.

[40]  R. Barrangou,et al.  In vitro reconstitution of Cascade‐mediated CRISPR immunity in Streptococcus thermophilus , 2013, The EMBO journal.

[41]  Alan R. Davidson,et al.  Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system , 2012, Nature.

[42]  Hongwei Wang,et al.  Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. , 2012, Structure.

[43]  George A. O'Toole,et al.  The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages , 2012, Journal of bacteriology.

[44]  Ivan Junier,et al.  The layout of a bacterial genome , 2012, FEBS letters.

[45]  A. Collmer,et al.  Pseudomonas syringae type III effector repertoires: last words in endless arguments. , 2012, Trends in microbiology.

[46]  Nicola K. Petty,et al.  BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons , 2011, BMC Genomics.

[47]  Philippe Horvath,et al.  Cas3 is a single‐stranded DNA nuclease and ATP‐dependent helicase in the CRISPR/Cas immune system , 2011, The EMBO journal.

[48]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[49]  U. Qimron,et al.  The Escherichia coli CRISPR System Protects from λ Lysogenization, Lysogens, and Prophage Induction , 2010, Journal of bacteriology.

[50]  Romain Chayot,et al.  An end-joining repair mechanism in Escherichia coli , 2010, Proceedings of the National Academy of Sciences.

[51]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[52]  G. Martin,et al.  Deletions in the Repertoire of Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Genes Reveal Functional Overlap among Effectors , 2009, PLoS pathogens.

[53]  H. Schweizer,et al.  PBAD-Based Shuttle Vectors for Functional Analysis of Toxic and Highly Regulated Genes in Pseudomonas and Burkholderia spp. and Other Bacteria , 2008, Applied and Environmental Microbiology.

[54]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[55]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[56]  F. Blattner,et al.  Emergent Properties of Reduced-Genome Escherichia coli , 2006, Science.

[57]  A. Doherty,et al.  Making Ends Meet: Repairing Breaks in Bacterial DNA by Non-Homologous End-Joining , 2006, PLoS genetics.

[58]  H. Schweizer,et al.  A Tn7-based broad-range bacterial cloning and expression system , 2005, Nature Methods.

[59]  G. O’Toole,et al.  Isolation and Characterization of a Generalized Transducing Phage for Pseudomonas aeruginosa Strains PAO1 and PA14 , 2004, Journal of bacteriology.

[60]  Jia Liu,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Kropinski Sequence of the Genome of the Temperate, Serotype-Converting,Pseudomonas aeruginosa Bacteriophage D3 , 2000, Journal of bacteriology.

[62]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[63]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[64]  B. Staskawicz,et al.  Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. , 1989, Science.

[65]  H. Schweizer,et al.  mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa , 2006, Nature Protocols.

[66]  U. Qimron,et al.  Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system , 2014, RNA biology.