Heterogeneously Structured Ontologies Integration , Connection , and Refinement

This paper systematically applies tools and techniques from the area of algebraic specification theory to corresponding ontology structuring and design tasks. We employ the heterogeneous structuring mechanisms of the heterogeneous algebraic specification language HetCasl for defining an abstract notion of structured heterogeneous ontology. This approach enables the designer to split up a heterogeneous ontology into semantically meaningful parts and employ dedicated reasoning tools to them. In particular, we distinguish three fundamentally different kinds of combining heterogeneous ontologies: integration, connection, and refinement.

[1]  Rod M. Burstall,et al.  Structured Theories in LCF , 1983, CAAP.

[2]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[3]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[4]  Trevor J. M. Bench-Capon,et al.  Formalising Ontologies and Their Relations , 1999, DEXA.

[5]  Philip A. Bernstein,et al.  A Model Theory for Generic Schema Management , 2001, DBPL.

[6]  Sofia Guerra Composition of Default Specifications , 2001, J. Log. Comput..

[7]  Pedro M. Domingos,et al.  Representing and reasoning about mappings between domain models , 2002, AAAI/IAAI.

[8]  Grigore Rosu,et al.  Institution Morphisms , 2013, Formal Aspects of Computing.

[9]  R. Azvan Diaconescu,et al.  Grothendieck Institutions , 2002 .

[10]  Frank Wolter,et al.  Connecting Abstract Description Systems , 2002 .

[11]  Luciano Serafini,et al.  Distributed Description Logics: Assimilating Information from Peer Sources , 2003, J. Data Semant..

[12]  Carsten Lutz,et al.  E-connections of abstract description systems , 2004, Artif. Intell..

[13]  Peter D. Mosses,et al.  CASL User Manual , 2004, Lecture Notes in Computer Science.

[14]  Joseph A. Goguen,et al.  Data, Schema, Ontology and Logic Integration , 2005, Log. J. IGPL.

[15]  Franz Baader,et al.  Connecting many-sorted theories , 2005, Journal of Symbolic Logic.

[16]  Frank van Harmelen,et al.  A Framework for Handling Inconsistency in Changing Ontologies , 2005, SEMWEB.

[17]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[18]  Pascal Hitzler,et al.  Formalizing Ontology Alignment and its Operations with Category Theory , 2006, FOIS.

[19]  Dieter Hutter,et al.  Development graphs - Proof management for structured specifications , 2006, J. Log. Algebraic Methods Program..

[20]  Joseph A. Goguen,et al.  Information Integration in Institutions , 2006 .

[21]  Bijan Parsia,et al.  Finding All Justifications of OWL DL Entailments , 2007, ISWC/ASWC.

[22]  Kinan M Al Haffar,et al.  A Model Theory for Generic Schema Management Models , 2007 .

[23]  S. Wölfl,et al.  The Heterogeneous Tool Set , 2007 .

[24]  Till Mossakowski,et al.  Qualitative Constraint Calculi: Heterogeneous Verification of Composition Tables , 2007, FLAIRS.

[25]  Till Mossakowski,et al.  Modules in Transition - Conservativity, Composition, and Colimits , 2007, WoMO.

[26]  Till Mossakowski,et al.  Conservativity in Structured Ontologies , 2008, ECAI.

[27]  Till Mossakowski,et al.  Shapes of Alignments - Construction, Combination, and Computation , 2008, WoMO.

[28]  Ian Horrocks,et al.  Modular Reuse of Ontologies: Theory and Practice , 2008, J. Artif. Intell. Res..

[29]  Yannis Kalfoglou,et al.  Institutionalising ontology-based semantic integration , 2008, Appl. Ontology.

[30]  Till Mossakowski,et al.  Heterogeneous colimits , 2008, 2008 IEEE International Conference on Software Testing Verification and Validation Workshop.