A climatologically significant aerosol longwave indirect effect in the Arctic

[1]  Judith A. Curry,et al.  A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of arctic clouds , 2005 .

[2]  Guang Guo,et al.  Remote sensing of cirrus optical and microphysical properties from ground-based infrared radiometric Measurements-part II: retrievals from CRYSTAL-FACE measurements , 2005, IEEE Geosci. Remote. Sens. Lett..

[3]  David D. Turner,et al.  Arctic Mixed-Phase Cloud Properties from AERI Lidar Observations: Algorithm and Results from SHEBA , 2005 .

[4]  William L. Smith,et al.  Atmospheric Emitted Radiance Interferometer. Part II: Instrument Performance , 2004 .

[5]  G. Mace,et al.  Effects of varying aerosol regimes on low‐level Arctic stratus , 2004 .

[6]  Dan Lubin,et al.  Thermodynamic phase of maritime Antarctic clouds from FTIR and supplementary radiometric data , 2004 .

[7]  M. Shupe,et al.  Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle , 2004 .

[8]  Joyce E. Penner,et al.  Observational evidence of a change in radiative forcing due to the indirect aerosol effect , 2004, Nature.

[9]  K. Hasselmann,et al.  Arctic climate change: observed and modelled temperature and sea-ice variability , 2004 .

[10]  M. Shupe,et al.  An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA , 2002 .

[11]  Edgar L. Andreas,et al.  An annual cycle of Arctic surface cloud forcing at SHEBA : The surface heat budget of arctic ocen (SHEBA) , 2002 .

[12]  J. Wallace,et al.  Response of Sea Ice to the Arctic Oscillation , 2002 .

[13]  Cecilia M. Bitz,et al.  Dynamics of Recent Climate Change in the Arctic , 2002, Science.

[14]  David J. Delene,et al.  Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites , 2002 .

[15]  Timothy J. Garrett,et al.  Aerosol Effects on Cloud Emissivity and Surface Longwave Heating in the Arctic , 2002 .

[16]  J. Curry,et al.  Surface Heat Budget of the Arctic Ocean , 2002 .

[17]  W. Cotton,et al.  Large‐eddy simulations of entrainment of cloud condensation nuclei into the Arctic boundary layer: May 18, 1998, FIRE/SHEBA case study , 2001 .

[18]  J. Wallace,et al.  Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability* , 2000 .

[19]  S. Warren,et al.  Ground-Based Infrared Remote Sensing of Cloud Properties over the Antarctic Plateau. Part II: Cloud Optical Depths and Particle Sizes , 2001 .

[20]  E. Clothiaux,et al.  Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites , 2000 .

[21]  S. Anderson,et al.  A New Look at Calibration and Use of Eppley Precision Infrared Radiometers. Part II: Calibration and Use of the Woods Hole Oceanographic Institution Improved Meteorology Precision Infrared Radiometer* , 1999 .

[22]  Judith A. Curry,et al.  Review of Science Issues, Deployment Strategy, and Status for the ARM North Slope of Alaska–Adjacent Arctic Ocean Climate Research Site , 1999 .

[23]  Peter J. Webster,et al.  Thermodynamics of Atmospheres and Oceans , 1998 .

[24]  Donald J. Cavalieri,et al.  Observed Hemispheric Asymmetry in Global Sea Ice Changes , 1997 .

[25]  D. Cornish Instrument Performance , 1994 .

[26]  K. Stamnes,et al.  Estimations of Cloud Optical Thickness from Ground-Based Measurements of Incoming Solar Radiation in the Arctic , 1994 .

[27]  L. Barrie,et al.  Arctic air pollution: An overview of current knowledge , 1986 .

[28]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .