Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract

[1]  A. Penman,et al.  Prevalence of Age-Related Lens Opacities in a Population , 2020 .

[2]  A. Auton,et al.  Insights into the genetic basis of retinal detachment , 2019, Human molecular genetics.

[3]  F. Woreta,et al.  Preoperative evaluation for cataract surgery , 2019, Current opinion in ophthalmology.

[4]  R. Klein,et al.  Exome Array Analysis of Nuclear Lens Opacity , 2018, Ophthalmic epidemiology.

[5]  Corey H Yu,et al.  The Structure of Metal Binding Domain 1 of the Copper Transporter ATP7B Reveals Mechanism of a Singular Wilson Disease Mutation , 2018, Scientific Reports.

[6]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[7]  C. Palmer,et al.  A Genome-Wide Association Study Provides New Evidence That CACNA1C Gene is Associated With Diabetic Cataract , 2016, Investigative ophthalmology & visual science.

[8]  Daniel Marbach,et al.  Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics , 2016, PLoS Comput. Biol..

[9]  Latarsha J. Carithers,et al.  The Genotype-Tissue Expression (GTEx) Project. , 2015, Biopreservation and biobanking.

[10]  Y. Shui,et al.  Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei , 2015, Proteomics. Clinical applications.

[11]  Dmitri D. Pervouchine,et al.  The human transcriptome across tissues and individuals , 2015, Science.

[12]  S. Rowan,et al.  Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract , 2015, Proceedings of the National Academy of Sciences.

[13]  Marylyn D. Ritchie,et al.  Electronic medical records and genomics (eMERGE) network exploration in cataract: Several new potential susceptibility loci , 2014, Molecular vision.

[14]  W. Boelens,et al.  Cell biological roles of αB-crystallin. , 2014, Progress in biophysics and molecular biology.

[15]  Y. Teo,et al.  Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. , 2014, Human molecular genetics.

[16]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[17]  J. M. Petrash,et al.  Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death. , 2014, Biochimica et biophysica acta.

[18]  H. Deng,et al.  Molecular genetics of congenital nuclear cataract. , 2014, European journal of medical genetics.

[19]  Gretchen A. Stevens,et al.  Causes of vision loss worldwide, 1990-2010: a systematic analysis. , 2013, The Lancet. Global health.

[20]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[21]  Fuu-Jen Tsai,et al.  Novel susceptibility genes associated with diabetic cataract in a Taiwanese population , 2013, Ophthalmic genetics.

[22]  Jacqueline K. White,et al.  Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome. , 2012, American journal of human genetics.

[23]  Simon C. Potter,et al.  Mapping cis- and trans-regulatory effects across multiple tissues in twins , 2012, Nature Genetics.

[24]  L. Fan,et al.  Down‐regulation and CpG island hypermethylation of CRYAA in age‐related nuclear cataract , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[26]  M. Stephens,et al.  Genome-wide Efficient Mixed Model Analysis for Association Studies , 2012, Nature Genetics.

[27]  Peter J Park,et al.  iSyTE: integrated Systems Tool for Eye gene discovery. , 2012, Investigative ophthalmology & visual science.

[28]  Jun Wang,et al.  Coralliform cataract caused by a novel connexin46 (GJA3) mutation in a Chinese family , 2012, Molecular vision.

[29]  D. Pascolini,et al.  Global estimates of visual impairment: 2010 , 2011, British Journal of Ophthalmology.

[30]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[31]  E. Agrón,et al.  Risk factors associated with incident cataracts and cataract surgery in the Age-related Eye Disease Study (AREDS): AREDS report number 32. , 2011, Ophthalmology.

[32]  L. Kessel Can we meet the future demands for cataract surgery? , 2011, Acta ophthalmologica.

[33]  P. Mitchell,et al.  Metabolic syndrome components and age-related cataract: the Singapore Malay eye study. , 2011, Investigative ophthalmology & visual science.

[34]  A. Santana,et al.  The genetic and molecular basis of congenital cataract. , 2011, Arquivos brasileiros de oftalmologia.

[35]  Johnny S. H. Kwan,et al.  GATES: a rapid and powerful gene-based association test using extended Simes procedure. , 2011, American journal of human genetics.

[36]  Usha Chakravarthy,et al.  Prevalence of Cataract in an Older Population in India , 2011, Ophthalmology.

[37]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[38]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[39]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[40]  R. Wallace,et al.  Healthy diets and the subsequent prevalence of nuclear cataract in women. , 2010, Archives of ophthalmology.

[41]  Nicholas Katsanis,et al.  Missense mutations in TCF8 cause late-onset Fuchs corneal dystrophy and interact with FCD4 on chromosome 9p. , 2010, American journal of human genetics.

[42]  P. Mitchell,et al.  Methodology of the Singapore Indian Chinese Cohort (SICC) Eye Study: Quantifying ethnic variations in the epidemiology of eye diseases in Asians , 2009, Ophthalmic epidemiology.

[43]  U. Andley Effects of α-Crystallin on Lens Cell Function and Cataract Pathology , 2009 .

[44]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[45]  Liang Xu,et al.  The Beijing Eye Study , 2009, Acta ophthalmologica.

[46]  Praveen Vashist,et al.  Current status of cataract blindness and Vision 2020: The right to sight initiative in India , 2008, Indian journal of ophthalmology.

[47]  Xiaoling Liang,et al.  Novel SOX2 mutation associated with ocular coloboma in a Chinese family. , 2008, Archives of ophthalmology.

[48]  Ronald Klein,et al.  Incidence of age-related cataract over a 15-year interval the Beaver Dam Eye Study. , 2008, Ophthalmology.

[49]  Monique M. B. Breteler,et al.  The Rotterdam Study: 2016 objectives and design update , 2015, European Journal of Epidemiology.

[50]  A. Hofman,et al.  The Rotterdam Study: objectives and design update , 2007, European Journal of Epidemiology.

[51]  D. Kiel,et al.  Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study , 2007, BMC Medical Genetics.

[52]  R. Maas,et al.  Sox2 and Pou2f1 interact to control lens and olfactory placode development. , 2007, Developmental biology.

[53]  T. Wong,et al.  Rationale and Methodology for a Population-Based Study of Eye Diseases in Malay People: The Singapore Malay Eye Study (SiMES) , 2007, Ophthalmic epidemiology.

[54]  Tim D Spector,et al.  The UK Adult Twin Registry (TwinsUK) , 2006, Twin Research and Human Genetics.

[55]  B. Lorenz,et al.  SOX2 anophthalmia syndrome , 2005, American journal of medical genetics. Part A.

[56]  H. Kondoh,et al.  Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. , 2004, The International journal of developmental biology.

[57]  Jun Wang,et al.  A novel connexin46 (GJA3) mutation in autosomal dominant congenital nuclear pulverulent cataract. , 2004, Molecular vision.

[58]  C. Hayward,et al.  Mutations in SOX2 cause anophthalmia , 2003, Nature Genetics.

[59]  K. Yasuda,et al.  Cooperative action between L-Maf and Sox2 on δ-crystallin gene expression during chick lens development , 2003, Mechanisms of Development.

[60]  M. Boehnke,et al.  Clinicopathologic correlation and genetic analysis in a case of posterior polymorphous corneal dystrophy. , 2003, American journal of ophthalmology.

[61]  R. Cumming,et al.  Hormone replacement therapy, reproductive factors, and the incidence of cataract and cataract surgery: the Blue Mountains Eye Study. , 2002, American journal of epidemiology.

[62]  A. Foster Cataract and “Vision 2020—the right to sight” initiative , 2001, The British journal of ophthalmology.

[63]  T. Spector,et al.  Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. , 2000, The New England journal of medicine.

[64]  P. Wilson,et al.  A longitudinal study of body mass index and lens opacities. The Framingham Studies. , 1998, Ophthalmology.

[65]  P. Kramer,et al.  Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. , 1998, Human molecular genetics.

[66]  R. Cumming,et al.  Prevalence of cataract in Australia: the Blue Mountains eye study. , 1997, Ophthalmology.

[67]  V. Uebele,et al.  A Novel K+ Channel β-Subunit (hKvβ1.3) Is Produced via Alternative mRNA Splicing (*) , 1995, The Journal of Biological Chemistry.

[68]  K L Linton,et al.  Prevalence of age-related lens opacities in a population. The Beaver Dam Eye Study. , 1992, Ophthalmology.

[69]  A. Cvekl,et al.  Lens Development and Crystallin Gene Expression. , 2015, Progress in molecular biology and translational science.

[70]  U. Andley Effects of alpha-crystallin on lens cell function and cataract pathology. , 2009, Current molecular medicine.

[71]  H. Kodama,et al.  Copper metabolism and inherited copper transport disorders: molecular mechanisms, screening, and treatment , 2009 .