A semi‐implicit, semi‐Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction

We present an adaptive discretization approach for model equations typical of numerical weather prediction (NWP), which combines the semi-Lagrangian technique with a semi-implicit time discretization method, based on the Trapezoidal Rule second-order Backward Difference Formula scheme (TR-BDF2), and with a discontinuous Galerkin (DG) spatial discretization, with variable and adaptive element degree. The resulting method has full second-order accuracy in time, can employ polynomial bases of arbitrarily high degree in space, is unconditionally stable and can effectively adapt the number of degrees of freedom employed in each element at runtime, in order to balance accuracy and computational cost. Furthermore, although the proposed method can be implemented on arbitrary unstructured and non-conforming meshes, even its application on simple Cartesian meshes in spherical coordinates can reduce the impact of the coordinate singularity, by reducing the polynomial degree used in the polar elements. Numerical results are presented, obtained on classical benchmarks with two-dimensional models implementing discretizations of the shallow-water equations on the sphere and of the Euler equations on a vertical slice, respectively. The results confirm that the proposed method has a significant potential for NWP applications.

[1]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[2]  Christoph Erath,et al.  A conservative multi-tracer transport scheme for spectral-element spherical grids , 2014, J. Comput. Phys..

[3]  Emil M. Constantinescu,et al.  Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA) , 2013, SIAM J. Sci. Comput..

[4]  Michael Dumbser,et al.  A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations , 2013, Appl. Math. Comput..

[5]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[6]  Saulo R. M. Barros,et al.  Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver , 1990 .

[7]  Harold Ritchie,et al.  Application of the Semi-Lagrangian Method to a Spectral Model of the Shallow Water Equations , 1988 .

[8]  Daniel Y. Le Roux,et al.  Spurious inertial oscillations in shallow-water models , 2012, J. Comput. Phys..

[9]  Clive Temperton,et al.  An Efficient Two‐Time‐Level Semi‐Lagrangian Semi‐Implicit Integration Scheme , 1987 .

[10]  Nigel Wood,et al.  Treatment of vector equations in deep‐atmosphere, semi‐Lagrangian models. II: Kinematic equation , 2010 .

[11]  Luca Bonaventura,et al.  Semi-implicit, semi-Lagrangian modelling for environmental problems on staggered Cartesian grids with cut cells , 2005 .

[12]  Mária Lukácová-Medvid'ová,et al.  Adaptive discontinuous evolution Galerkin method for dry atmospheric flow , 2014, J. Comput. Phys..

[13]  Michael Baldauf,et al.  An analytic solution for linear gravity waves in a channel as a test for numerical models using the non‐hydrostatic, compressible Euler equations , 2013 .

[14]  V. Casulli,et al.  Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow☆ , 1994 .

[15]  J. R. Bates,et al.  Semi-Lagrangian Integration of a Gridpoint Shallow Water Model on the Sphere , 1989 .

[16]  Dörthe Handorf,et al.  Unsteady analytical solutions of the spherical shallow water equations , 2005 .

[17]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[18]  M. Cullen A test of a semi‐implicit integration technique for a fully compressible non‐hydrostatic model , 1990 .

[19]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  Francis X. Giraldo,et al.  Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode , 2012, J. Comput. Phys..

[22]  K. Morton On the Analysis of Finite Volume Methods for Evolutionary Problems , 1998 .

[23]  Francis X. Giraldo,et al.  Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments , 2013, J. Comput. Phys..

[24]  Christoph Erath,et al.  Integrating a scalable and effcient semi-Lagrangian multi-tracer transport scheme in HOMME , 2012, ICCS.

[25]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[26]  Luca Bonaventura,et al.  A Semi-implicit Semi-Lagrangian Scheme Using the Height Coordinate for a Nonhydrostatic and Fully Elastic Model of Atmospheric Flows , 2000 .

[27]  Francis X. Giraldo,et al.  Trajectory Calculations for Spherical Geodesic Grids in Cartesian Space , 1999 .

[28]  Giovanni Tumolo,et al.  A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations , 2013, J. Comput. Phys..

[29]  P. Woodward,et al.  Application of the Piecewise Parabolic Method (PPM) to meteorological modeling , 1990 .

[30]  Rodolfo Bermejo,et al.  An adaptive finite element semi-Lagrangian implicit--explicit Runge--Kutta--Chebyshev method for convection dominated reaction--diffusion problems , 2008 .

[31]  Leszek Demkowicz,et al.  Parallel, fully automatic hp-adaptive 2d finite element package , 2006 .

[32]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.

[33]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[34]  Endre Süli,et al.  Evolution-Galerkin methods and their supraconvergence , 1995 .

[35]  J. McGregor,et al.  Economical Determination of Departure Points for Semi-Lagrangian Models , 1993 .

[36]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[37]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[38]  Virginie Grandgirard,et al.  Gyrokinetic Semi-lagrangian Parallel Simulation Using a Hybrid OpenMP/MPI Programming , 2007, PVM/MPI.

[39]  Jean Côté,et al.  A Two-Time-Level Semi-Lagrangian Semi-implicit Scheme for Spectral Models , 1988 .

[40]  Christoph Erath,et al.  Reprint of: A conservative multi-tracer transport scheme for spectral-element spherical grids , 2014, J. Comput. Phys..

[41]  John Thuburn,et al.  A geometrical view of the shallow‐atmosphere approximation, with application to the semi‐Lagrangian departure point calculation , 2013 .

[42]  J. Côté,et al.  A Lagrange multiplier approach for the metric terms of semi‐Lagrangian models on the sphere , 1988 .

[43]  Joseph B. Klemp,et al.  Numerical Simulation of Hydrostatic Mountain Waves , 1978 .

[44]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[45]  Francis X. Giraldo,et al.  Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations , 2014, J. Comput. Phys..

[46]  John C. Butcher,et al.  A new type of singly-implicit Runge-Kutta method , 2000 .

[47]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2005 .

[48]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[49]  A. K. Patra,et al.  Data structures and load balancing for parallel adaptive hp finite-element methods☆ , 2003 .

[50]  M. Giorgetta,et al.  Icosahedral Shallow Water Model (ICOSWM): results of shallow water test cases and sensitivity to model parameters , 2009 .

[51]  Francis X. Giraldo,et al.  High‐order semi‐implicit time‐integrators for a triangular discontinuous Galerkin oceanic shallow water model , 2009 .

[52]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[53]  Luca Bonaventura,et al.  Earth System Modelling - Volume 2: Algorithms, Code Infrastructure and Optimisation , 2011 .

[54]  Evelyne Richard,et al.  Simple Tests of a Semi-Implicit Semi-Lagrangian Model on 2D Mountain Wave Problems , 1995 .

[55]  Riccardo Sacco,et al.  A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows , 2006, J. Comput. Phys..

[56]  Roberto Ferretti,et al.  Semi-Lagrangian Methods for Parabolic Problems in Divergence Form , 2014, SIAM J. Sci. Comput..

[57]  E Livne,et al.  Finite elements and characteristics applied to advection-diffusion equations , 1983 .

[58]  Lawrence F. Shampine,et al.  Analysis and implementation of TR-BDF2 , 1996 .

[59]  J. Hack,et al.  Spectral transform solutions to the shallow water test set , 1995 .

[60]  A. Priestley,et al.  Exact projections and the Lagrange-Galerkin method: a realistic alternative to quadrature , 1994 .

[61]  Endre Süli,et al.  Stability of the Lagrange-Galerkin method with non-exact integration , 1988 .

[62]  Vincenzo Casulli,et al.  Semi-implicit finite difference methods for the two-dimensional shallow water equation , 1990 .

[63]  Randolph E. Bank,et al.  Transient simulation of silicon devices and circuits , 1985 .

[64]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[65]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[66]  Graham F. Carey,et al.  Stability/dispersion analysis of the discontinuous galerkin linearized shallow-water system , 2005 .

[67]  Clive Temperton,et al.  A two‐time‐level semi‐Lagrangian global spectral model , 2001 .