The generating function of convex polyominoes: The resolution of a q-differential system
暂无分享,去创建一个
[1] Ronald L. Rivest,et al. Asymptotic bounds for the number of convex n-ominoes , 1974, Discret. Math..
[2] K. Lin,et al. Rigorous results for the number of convex polygons on the square and honeycomb lattices , 1988 .
[3] Mireille Bousquet-Mélou,et al. Empilements de segments et q-énumération de polyominos convexes dirigés , 1992, J. Comb. Theory, Ser. A.
[4] Gérard Viennot,et al. Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..
[5] Mireille Bousquet-Mélou,et al. Bijection of convex polyominoes and equations for enumerating them according to area , 1994 .
[6] A. Guttmann,et al. Exact solution of the staircase and row-convex polygon perimeter and area generating function , 1990 .
[7] K. Lin,et al. EXACT SOLUTION OF THE CONVEX POLYGON PERIMETER AND AREA GENERATING FUNCTION , 1991 .
[8] G. Andrews. The Theory of Partitions: Frontmatter , 1976 .
[9] Mireille Bousquet-Mélou,et al. q -enumeration of convex polyominoes , 1993 .
[10] Jean-Marc Fedou,et al. Enumeration of skew Ferrers diagrams , 1993, Discret. Math..
[11] M. Bousquet-Mélou,et al. Convex polyominoes and algebraic languages , 1992 .
[12] Mireille Bousquet-Mélou,et al. Codage des polyominos convexes et équations pour l'énumération suivant l'aire , 1994, Discret. Appl. Math..
[13] Mireille Bousquet-Mélou,et al. Stacking of segments and q -enumeration of convex directed polyominoes , 1992 .
[14] D. Klarner,et al. A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.
[15] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[16] Edward A. Bender,et al. Convex n-ominoes , 1974, Discret. Math..