The generating function of convex polyominoes: The resolution of a q-differential system

We give a `beautiful? ? though complex ? formula for the generating function Z of convex polyominoes, according to their area, width and height. Our method consists in solving a linear q-differential system of size three, which was derived two years ago by encoding convex polyominoes with the words of an algebraic language (Schutzenberger's methodology). Three other formulas had already been obtained for Z, but neither was entirely satisfying.

[1]  Ronald L. Rivest,et al.  Asymptotic bounds for the number of convex n-ominoes , 1974, Discret. Math..

[2]  K. Lin,et al.  Rigorous results for the number of convex polygons on the square and honeycomb lattices , 1988 .

[3]  Mireille Bousquet-Mélou,et al.  Empilements de segments et q-énumération de polyominos convexes dirigés , 1992, J. Comb. Theory, Ser. A.

[4]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[5]  Mireille Bousquet-Mélou,et al.  Bijection of convex polyominoes and equations for enumerating them according to area , 1994 .

[6]  A. Guttmann,et al.  Exact solution of the staircase and row-convex polygon perimeter and area generating function , 1990 .

[7]  K. Lin,et al.  EXACT SOLUTION OF THE CONVEX POLYGON PERIMETER AND AREA GENERATING FUNCTION , 1991 .

[8]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[9]  Mireille Bousquet-Mélou,et al.  q -enumeration of convex polyominoes , 1993 .

[10]  Jean-Marc Fedou,et al.  Enumeration of skew Ferrers diagrams , 1993, Discret. Math..

[11]  M. Bousquet-Mélou,et al.  Convex polyominoes and algebraic languages , 1992 .

[12]  Mireille Bousquet-Mélou,et al.  Codage des polyominos convexes et équations pour l'énumération suivant l'aire , 1994, Discret. Appl. Math..

[13]  Mireille Bousquet-Mélou,et al.  Stacking of segments and q -enumeration of convex directed polyominoes , 1992 .

[14]  D. Klarner,et al.  A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[15]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[16]  Edward A. Bender,et al.  Convex n-ominoes , 1974, Discret. Math..