Microstructure evolution of Si3N4 ceramics with high thermal conductivity by using Y2O3 and MgSiN2 as sintering additives

[1]  X. Hou,et al.  New design concept for stable α-silicon nitride based on the initial oxidation evolution at the atomic and molecular levels , 2022, Journal of Materials Science & Technology.

[2]  Zhi-Peng Xie,et al.  Effect of composite sintering additives containing non-oxide on mechanical, thermal and dielectric properties of silicon nitride ceramics substrate , 2021 .

[3]  Guanghua Liu,et al.  Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics , 2020 .

[4]  X. Hou,et al.  Morphological evolution of porous silicon nitride ceramics at initial stage when exposed to water vapor , 2017 .

[5]  W. Han,et al.  Effect of sintering additive composition on microstructure and mechanical properties of silicon nitride , 2017 .

[6]  Young-Jo Park,et al.  Effects of microstructure and intergranular glassy phases on thermal conductivity of silicon nitride , 2017 .

[7]  O. Lukianova Mechanical and elastic properties of new silicon nitride ceramics produced by cold isostatic pressing and free sintering , 2015 .

[8]  Jun Li,et al.  The role of MgSiN2 during the sintering process of silicon nitride ceramic , 2013 .

[9]  Y. Yoshizawa,et al.  A Tough Silicon Nitride Ceramic with High Thermal Conductivity , 2011, Advanced materials.

[10]  Chris Bailey,et al.  Design for reliability of power electronics modules , 2009, Microelectron. Reliab..

[11]  Bruno Allard,et al.  State of the art of high temperature power electronics , 2009 .

[12]  C. Eddy,et al.  Silicon Carbide as a Platform for Power Electronics , 2009, Science.

[13]  K. Hirao,et al.  Processing and thermal conductivity of sintered reaction-bonded silicon nitride. (II) Effects of magnesium compound and yttria additives , 2007 .

[14]  Hajime Okumura,et al.  Present Status and Future Prospect of Widegap Semiconductor High-Power Devices , 2006 .

[15]  A. Hakeem,et al.  Silicate Glasses with Unprecedented High Nitrogen and Electropositive Metal Contents Obtained by Using Metals as Precursors , 2005 .

[16]  A. Umemoto,et al.  RE(RE=Y,Gd,Nd,La)-Mg-Si-O-N系融体中におけるβ-窒化ケイ素の結晶成長 , 2005 .

[17]  S. Kanzaki,et al.  Thermal Conductivity of ß‐Si3N4: I, Effects of Various Microstructural Factors , 2004 .

[18]  S. Kanzaki,et al.  Thermal Conductivity of β‐Si3N4: II, Effect of Lattice Oxygen , 2004 .

[19]  S. Kanzaki,et al.  Thermal Conductivity of β‐Si3N4: III, Effect of Rare‐Earth (RE = La, Nd, Gd, Y, Yb, and Sc) Oxide Additives , 2004 .

[20]  S. Gurrum,et al.  Thermal issues in next-generation integrated circuits , 2004, IEEE Transactions on Device and Materials Reliability.

[21]  K. Hirao,et al.  Influence of additive composition on thermal and mechanical properties of ß–Si_3N_4 ceramics , 2004 .

[22]  Zhe Zhao,et al.  Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening , 2002, Nature.

[23]  N. Hirosaki,et al.  Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si 3 N 4 , 2002 .

[24]  D. Fournier,et al.  Thermal Conductivity of β-Si3N4 Single Crystal , 2000 .

[25]  H. Kleebe,et al.  Microstructure and Fracture Toughness of Si3N4 Ceramics: Combined Roles of Grain Morphology and Secondary Phase Chemistry , 1999 .

[26]  H. Uchida,et al.  Synthesis of magnesium silicon nitride by the nitridation of powders in the magnesium-silicon system , 1997 .

[27]  P. Becher Microstructural design of toughened ceramics , 1991 .

[28]  K. E. Amin,et al.  A Method for Quantitative Phase Analysis of Silicon Nitride by X-Ray Diffraction , 1990, Powder Diffraction.

[29]  J. Heinrich,et al.  Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride , 1987 .

[30]  G. Dunlop,et al.  Development of microstructure during the fabrication of Si3N4 by nitridation and pressureless sintering of Si:Si3N4 compacts , 1985 .

[31]  G. Brebec,et al.  Diffusion du silicium dans la silice amorphe , 1980 .

[32]  W. Kingery,et al.  Densification during Sintering in the Presence of a Liquid Phase. I. Theory , 1959 .

[33]  Y. Yoshizawa,et al.  Crack profiles under a Vickers indent in silicon nitride ceramics with various microstructures , 2010 .

[34]  X. Zhu,et al.  Effect of MgSiN2 addition on gas pressure sintering and thermal conductivity of silicon nitride with Y2O3 , 2008 .

[35]  K. Nakashima,et al.  Effect of RE 2O 3 (RE = Y, Gd, Nd and La) additions on liquidas temperatures and viscosities of MgrO-SiO 2 melts , 2005 .

[36]  M. Hoffmann,et al.  Grain growth anisotropy of β-silicon nitride in rare-earth doped oxynitride glasses , 2004 .

[37]  G. Shao,et al.  Grain boundary glassy phase and abnormal grain growth of silicon nitride ceramics , 2001 .

[38]  M. Mitomo,et al.  Control and characterization of abnormally grown grains in silicon nitride ceramics , 1997 .

[39]  L. Falk,et al.  β-Si3N4 grain growth, part I: Effect of metal oxide sintering additives , 1997 .

[40]  Michael J. Hoffmann,et al.  Model experiments concerning abnormal grain growth in silicon nitride , 1996 .

[41]  M. Prokešová,et al.  Particle rearrangement during liquid phase sintering of silicon nitride , 1989 .

[42]  D. Uskoković,et al.  Science of Sintering , 1989 .