Analysis of Options in Double-Gate MOS Technology: A Circuit Perspective

Double-gate MOS (DGMOS) technologies are emerging as possible substitutes for single-gate planar bulk devices in the near future. This paper defines and presents different DGMOS device-and circuit-design possibilities. It studies Schmitt triggers to eloquently analyze the interplay between noise immunity, circuit speed, and power dissipation as a function of device-level parameters. The asymmetric DGMOS devices and independent-gate technology can provide high noise immunity and dynamic power reduction at increased gate-delay, leakage-power, and process-sensitivity penalties. Furthermore, connected-gate DGMOS circuits work best with symmetric devices.

[1]  Ching-Te Chuang,et al.  Physical compact model for threshold voltage in short-channel double-gate devices , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..

[2]  Meng-Hsueh Chiang,et al.  Speed superiority of scaled double-gate CMOS , 2002 .

[3]  E. Nowak,et al.  High-performance symmetric-gate and CMOS-compatible V/sub t/ asymmetric-gate FinFET devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[4]  H.-S.P. Wong,et al.  Experimental evaluation of carrier transport and device design for planar symmetric/asymmetric double-gate/ground-plane CMOSFETs , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[5]  Qiang Chen,et al.  A comparative study of threshold variations in symmetric and asymmetric undoped double-gate MOSFETs , 2002, 2002 IEEE International SOI Conference.

[6]  Saibal Mukhopadhyay,et al.  Modeling and optimization approach to robust and low-power FinFET SRAM design in nanoscale era , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[7]  K. Roy,et al.  High performance and low power domino logic using independent gate control in double-gate SOI MOSFETs , 2004, 2004 IEEE International SOI Conference (IEEE Cat. No.04CH37573).

[8]  M. Masahara,et al.  Demonstration of Asymmetric Gate Oxide Thickness 4-Terminal FinFETs , 2006, 2006 IEEE international SOI Conferencee Proceedings.

[9]  K. Itoh,et al.  Impact of FD-SOI on Deep-Sub-100-nm CMOS LSIs -A View of Memory Designers- , 2006, 2006 IEEE international SOI Conferencee Proceedings.

[10]  Kaushik Roy,et al.  Design of high performance sense amplifier using independent gate control in sub-50nm double-gate MOSFET , 2005, Sixth international symposium on quality electronic design (isqed'05).

[11]  A. Vandooren,et al.  CMOS Vertical Multiple Independent Gate Field Effect Transistor (MIGFET) , 2004, 2004 IEEE International SOI Conference (IEEE Cat. No.04CH37573).

[12]  Takayasu Sakurai,et al.  Delay analysis of series-connected MOSFET circuits , 1991 .

[13]  K. Roy,et al.  Independent gate skewed logic in double-gate SOI technology , 2005, 2005 IEEE International SOI Conference Proceedings.

[14]  K. Saraswat,et al.  Novel process for fully self-aligned planar ultrathin body Double-Gate FET , 2004, 2004 IEEE International SOI Conference (IEEE Cat. No.04CH37573).

[15]  Ali M. Niknejad,et al.  Circuit performance of double-gate SOI CMOS , 2003, International Semiconductor Device Research Symposium, 2003.

[16]  K. Roy,et al.  A low power four transistor Schmitt Trigger for asymmetric double gate fully depleted SOI devices , 2003, 2003 IEEE International Conference on SOI.

[17]  Keunwoo Kim,et al.  Double-gate CMOS: symmetrical- versus asymmetrical-gate devices , 2001 .

[18]  Edward J. Nowak,et al.  Maintaining the benefits of CMOS scaling when scaling bogs down , 2002, IBM J. Res. Dev..

[19]  D. A. Antoniadis,et al.  Effect of back-gate biasing on the performance and leakage control in deeply scaled SOI MOSFETs , 2002, 2002 IEEE International SOI Conference.

[20]  M. Yamaoka,et al.  Low power SRAM menu for SOC application using Yin-Yang-feedback memory cell technology , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).