Atomic Resolution Defocused Electron Ptychography at Low Dose with a Fast, Direct Electron Detector

[1]  H. Sawada,et al.  Fast and Low-dose Electron Ptychography , 2018, Microscopy and Microanalysis.

[2]  Veit Elser,et al.  Electron ptychography of 2D materials to deep sub-ångström resolution , 2018, Nature.

[3]  Jannik C. Meyer,et al.  Software electron counting for low-dose scanning transmission electron microscopy. , 2018, Ultramicroscopy.

[4]  J. A. Mir,et al.  Characterisation of the Medipix3 detector for 60 and 80keV electrons. , 2017, Ultramicroscopy.

[5]  Jannik C. Meyer,et al.  Analysis of Point Defects in Graphene Using Low Dose Scanning Transmission Electron Microscopy Imaging and Maximum Likelihood Reconstruction , 2017, 1805.01712.

[6]  P. Nellist,et al.  Electron ptychographic microscopy for three-dimensional imaging , 2017, Nature Communications.

[7]  A. Kirkland,et al.  Electron Ptychographic Diffractive Imaging of Boron Atoms in LaB6 Crystals , 2017, Scientific Reports.

[8]  Christoph Hofer,et al.  Automated Image Acquisition for Low-Dose STEM at Atomic Resolution , 2017, Microscopy and Microanalysis.

[9]  R. Bücker,et al.  Low-dose cryo electron ptychography via non-convex Bayesian optimization , 2017, Scientific Reports.

[10]  A. J. D’Alfonso,et al.  Practical aspects of diffractive imaging using an atomic-scale coherent electron probe. , 2016, Ultramicroscopy.

[11]  Malcolm L. H. Green,et al.  Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures , 2016, Nature Communications.

[12]  H. Sawada,et al.  Dose-dependent high-resolution electron ptychography , 2016 .

[13]  D. Muller,et al.  High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy , 2015, Microscopy and Microanalysis.

[14]  Lewys Jones,et al.  Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution. , 2015, Ultramicroscopy.

[15]  Siyuan Dong,et al.  Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging. , 2014, Biomedical optics express.

[16]  Leslie J. Allen,et al.  Deterministic electron ptychography at atomic resolution , 2014 .

[17]  A. Diaz,et al.  Translation position determination in ptychographic coherent diffraction imaging. , 2013, Optics express.

[18]  Y. Sasaki,et al.  Optimal accelerating voltage for HRTEM imaging of zeolite. , 2013, Microscopy.

[19]  Lewys Jones,et al.  Identifying and Correcting Scan Noise and Drift in the Scanning Transmission Electron Microscope , 2013, Microscopy and Microanalysis.

[20]  L. Leibler,et al.  Heterogeneous nucleation of organic crystals mediated by single-molecule templates. , 2012, Nature materials.

[21]  K. Nugent,et al.  Atom-scale ptychographic electron diffractive imaging of boron nitride cones. , 2012, Physical review letters.

[22]  J. Rodenburg,et al.  Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.

[23]  Manuel Guizar-Sicairos,et al.  Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging. , 2011, Optics express.

[24]  J. Rodenburg,et al.  Extended ptychography in the transmission electron microscope: possibilities and limitations. , 2011, Ultramicroscopy.

[25]  U Kaiser,et al.  Transmission electron microscopy at 20 kV for imaging and spectroscopy. , 2011, Ultramicroscopy.

[26]  Fucai Zhang,et al.  Superresolution imaging via ptychography. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  H. Freund,et al.  Double aberration correction in a low-energy electron microscope. , 2010, Ultramicroscopy.

[28]  Elvio Carlino,et al.  Electron diffractive imaging of oxygen atoms in nanocrystals at sub-ångström resolution. , 2010, Nature nanotechnology.

[29]  Q. Ramasse,et al.  High-resolution low-dose scanning transmission electron microscopy. , 2010, Journal of electron microscopy.

[30]  H. Sawada,et al.  STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. , 2009, Journal of electron microscopy.

[31]  O. Krivanek,et al.  High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[33]  Peter Hartel,et al.  First Application of Cc Corrected Imaging for High-Resolution and Energy-Filtered TEM , 2009, Microscopy and Microanalysis.

[34]  A. Thust High-resolution transmission electron microscopy on an absolute contrast scale. , 2009, Physical review letters.

[35]  Peter Hartel,et al.  First application of Cc-corrected imaging for high-resolution and energy-filtered TEM. , 2009, Journal of electron microscopy.

[36]  D. Muller Structure and bonding at the atomic scale by scanning transmission electron microscopy. , 2009, Nature materials.

[37]  Jian-Min Zuo,et al.  Sub-ångström-resolution diffractive imaging of single nanocrystals , 2009 .

[38]  Susanne Stemmer,et al.  Quantitative atomic resolution scanning transmission electron microscopy. , 2008, Physical review letters.

[39]  P D Nellist,et al.  Direct Sub-Angstrom Imaging of a Crystal Lattice , 2004, Science.

[40]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[41]  J. Zuo,et al.  Atomic Resolution Imaging of a Carbon Nanotube from Diffraction Intensities , 2003, Science.

[42]  U Weierstall,et al.  Image reconstruction from electron and X-ray diffraction patterns using iterative algorithms: experiment and simulation. , 2002, Ultramicroscopy.

[43]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[44]  B. C. McCallum,et al.  Resolution beyond the 'information limit' in transmission electron microscopy , 1995, Nature.

[45]  L. Hobbs Application of Transmission Electron Microscopy to Radiation Damage in Ceramics , 1979 .

[46]  D. Grubb Radiation damage and electron microscopy of organic polymers , 1974 .

[47]  R. Glaeser,et al.  Limitations to significant information in biological electron microscopy as a result of radiation damage. , 1971, Journal of ultrastructure research.

[48]  G. Smirnov,et al.  Possibilities and Limitations , 1970 .

[49]  G. Vineyard,et al.  THE DYNAMICS OF RADIATION DAMAGE , 1960 .

[50]  J. M. Cowley A New Microscope Principle , 1953 .

[51]  D. Gabor A New Microscopic Principle , 1948, Nature.

[52]  H. Sawada,et al.  Super High Resolution Imaging with Atomic Resolution Electron Microscope of JEM-ARM300F , 2014 .

[53]  Guoan Zheng,et al.  0.5 gigapixel microscopy using a flatbed scanner. , 2013, Biomedical optics express.

[54]  A. J. D’Alfonso,et al.  Quantitative comparisons of contrast in experimental and simulated bright-field scanning transmission electron microscopy images , 2009 .

[55]  Bernd Kabius,et al.  A way to higher resolution: spherical-aberration correction in a 200 kV transmission electron microscope , 1999 .