High‐Efficiency Nanostructured Silicon Solar Cells on a Large Scale Realized Through the Suppression of Recombination Channels

Nanostructured silicon solar cells show great potential for new-generation photovoltaics due to their ability to approach ideal light-trapping. However, the nanofeatured morphology that brings about the optical benefits also introduces new recombination channels, and severe deterioration in the electrical performance even outweighs the gain in optics in most attempts. This Research News article aims to review the recent progress in the suppression of carrier recombination in silicon nanostructures, with the emphasis on the optimization of surface morphology and controllable nanostructure height and emitter doping concentration, as well as application of dielectric passivation coatings, providing design rules to realize high-efficiency nanostructured silicon solar cells on a large scale.

[1]  Gang Chen,et al.  Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. , 2010, Nano letters.

[2]  Zhong-quan Ma,et al.  Refined nano-textured surface coupled with SiNx layer on the improved photovoltaic properties of multi-crystalline silicon solar cells , 2013 .

[3]  Gang Chen,et al.  Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. , 2012, Nano letters.

[4]  Jr-Hau He,et al.  Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency , 2011 .

[5]  A. Bagal,et al.  Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference , 2013, Nanotechnology.

[6]  U. Paik,et al.  Solar cell implemented with silicon nanowires on pyramid-texture silicon surface , 2013 .

[7]  Charles M. Lieber,et al.  Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells , 2013 .

[8]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[9]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[10]  Yan Wang,et al.  Nanostructure formation and passivation of large-area black silicon for solar cell applications. , 2012, Small.

[11]  Hongyu Yu,et al.  Periodically Aligned Si Nanopillar Arrays as Efficient Antireflection Layers for Solar Cell Applications , 2010, Nanoscale research letters.

[12]  Thomas Käsebier,et al.  Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition , 2012 .

[13]  Chaobo Li,et al.  Influence of the texturing structure on the properties of black silicon solar cell , 2013 .

[14]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[15]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[16]  T. Chikyow,et al.  Interface engineering for the passivation of c-Si with O3-based atomic layer deposited AlOx for solar cell application , 2012 .

[17]  Yi Cui,et al.  All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency , 2013, Nature Communications.

[18]  Armin G. Aberle,et al.  Surface passivation of crystalline silicon solar cells: a review , 2000 .

[19]  A. Motayed,et al.  Rapid thermal oxidation of silicon nanowires , 2009 .

[20]  Zheng Jiayi,et al.  Improvement of conversion efficiency of multicrystalline silicon solar cells by incorporating reactive ion etching texturing , 2014 .

[21]  Che-wei Lin,et al.  Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. , 2013, ACS applied materials & interfaces.

[22]  Paul Stradins,et al.  Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules , 2009 .

[23]  Z. Pei,et al.  Ultra high-density silicon nanowires for extremely low reflection in visible regime , 2011 .

[24]  Martin Stutzmann,et al.  Black nonreflecting silicon surfaces for solar cells , 2006 .

[25]  Han-Don Um,et al.  Optimal design for antireflective Si nanowire solar cells , 2013 .

[26]  Fred Roozeboom,et al.  Very low surface recombination velocities on p- and n-type c-Si by ultrafast spatial atomic layer deposition of aluminum oxide , 2010 .

[27]  Young Min Song,et al.  Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells. , 2011, Optics express.

[28]  W. Shen,et al.  Realization of high performance silicon nanowire based solar cells with large size , 2013, Nanotechnology.

[29]  Bohr‐Ran Huang,et al.  Efficiency improvement of silicon nanostructure-based solar cells , 2014, Nanotechnology.

[30]  Y. Song,et al.  Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications , 2013, Nanoscale Research Letters.

[31]  Jin-Young Jung,et al.  Upgraded Silicon Nanowires by Metal‐Assisted Etching of Metallurgical Silicon: A New Route to Nanostructured Solar‐Grade Silicon , 2013, Advanced materials.

[32]  Rusli,et al.  High-efficiency si/polymer hybrid solar cells based on synergistic surface texturing of Si nanowires on pyramids. , 2012, Small.

[33]  Fatima Toor,et al.  Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells , 2011 .

[34]  Tianchun Ye,et al.  Influence of nanowires length on performance of crystalline silicon solar cell , 2011 .

[35]  Kui‐Qing Peng,et al.  High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. , 2011, Angewandte Chemie.

[36]  Scott Ward,et al.  Nanostructured black silicon and the optical reflectance of graded-density surfaces , 2009 .

[37]  Min-Yi Shih,et al.  Strong broadband optical absorption in silicon nanowire films , 2007 .

[38]  W. Shen,et al.  Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays , 2011, Nanotechnology.

[39]  Vikram Kumar,et al.  Fabrication of silicon nanowire arrays based solar cell with improved performance , 2011 .

[40]  P. Pignalosa,et al.  Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection , 2011, 1108.1088.

[41]  Zixu Sun,et al.  Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications , 2013 .

[42]  Long Wen,et al.  Surface morphology-dependent photoelectrochemical properties of one-dimensional Si nanostructure arrays prepared by chemical etching. , 2013, ACS applied materials & interfaces.

[43]  J. Yi,et al.  Black silicon layer formation for application in solar cells , 2006 .

[44]  Robert Mertens,et al.  Approach for Al2O3 rear surface passivation of industrial p‐type Si PERC above 19% , 2012 .

[45]  A. Aberle,et al.  Extremely low surface recombination velocities on low‐resistivity n‐type and p‐type crystalline silicon using dynamically deposited remote plasma silicon nitride films , 2014 .

[46]  G. Dingemans,et al.  Role of field-effect on c-Si surface passivation by ultrathin (2–20 nm) atomic layer deposited Al2O3 , 2010 .

[47]  M. Schubert,et al.  n-type black silicon solar cells , 2013 .