On the modeling of a sustainable system for urban development simulation using data mining and distributed agencies

Social Simulation allows us to experiment in the social arena while avoiding unnecessary expenses and potential threats; a clear example of this is reflected in the simulation of urban growth, particularly if done without losing sight of the sustainable development necessary for maintaining the overall equilibrium of a city. This article provides a hybrid methodology using Distributed Agencies, cellular automaton, and dynamical systems to model the social processes of urban growth; raking in the most important data of the methodology through a corresponding method of data mining. Through the use of a qualitative and quantitative method we provide some important advancements in the field for the development of an appropriate understanding of social, economic and environmental aspects of urban growth.

[1]  David L. Williams,et al.  Rationale for research on including sustainable agriculture in the high school agricultural education curriculum , 1998 .

[2]  Scott E. Page,et al.  Agent-Based Models , 2014, Encyclopedia of GIS.

[3]  Jason Brownlee,et al.  Complex adaptive systems , 2007 .

[4]  R. Jackson,et al.  Modeling Regional Growth Spillovers: An Analysis of Employment Growth, Migration Behavior, Local Public Services and Household Income in Appalachia , 2008 .

[5]  Stephan R. P. Halloy,et al.  A Theoretical Frameworkfor Abundance Distributions in Complex Systems , 1999 .

[6]  Michael Batty,et al.  New Developments in GIS for Urban Planning , 2009 .

[7]  Manuel Castañón-Puga,et al.  Analyzing the Mexican microfinance industry using multi-level multi-agent systems , 2009, SpringSim '09.

[8]  Mark Newman,et al.  Complex Systems Theory and Evolution , 2002 .

[9]  U. Netlogo Wilensky,et al.  Center for Connected Learning and Computer-Based Modeling , 1999 .

[10]  Michael Drennan,et al.  The Human Science of Simulation: a Robust Hermeneutics for Artificial Societies , 2004, J. Artif. Soc. Soc. Simul..

[11]  Zhengxin Chen,et al.  A Descriptive Framework for the Field of Data Mining and Knowledge Discovery , 2008, Int. J. Inf. Technol. Decis. Mak..

[12]  F. Aguilera,et al.  Predicción del crecimiento urbano mediante sistemas de información geográfica y modelos basados en autómatas celulares , 2006 .

[13]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[14]  W. Ross Ashby,et al.  Principles of the Self-Organizing System , 1991 .

[15]  Francis Heylighen,et al.  Five Questions on Complexity , 2007, nlin/0702016.

[16]  N. Theresa Hoagland,et al.  Sustainable systems theory: ecological and other aspects , 2005 .

[17]  P. Torrens,et al.  Geosimulation: Automata-based modeling of urban phenomena , 2004 .

[18]  Zhengxin Chen,et al.  Using Branch-Grafted R-trees for Spatial Data Mining , 2004, International Conference on Computational Science.