On mathematical models and numerical simulation of the fluidization of polydisperse suspensions

Abstract The well-known Masliyah–Lockett–Bassoon (MLB) model for sedimentation of small particles is extended to fluidization of polydisperse suspensions. For N particle species that differ in size and density, this model leads to a first-order system of N conservation laws, which in general is of mixed (in the case N  = 2, hyperbolic–elliptic) type. By a simple algebraic steady-state analysis, we derive necessary compatibility conditions on the size and density parameters that admit the formation of stationary fluidized beds. We then proceed to determine the composition of polydisperse fluidized beds of given compatible species by varying the fluidization velocity and the initial composition of the suspensions, and prove that, within the framework of the MLB model combined with the Richardson–Zaki formula, the constructed bidisperse beds always cause the equations to be hyperbolic. This means that these states are always predicted to be stable. The transient behaviour of the MLB model applied to fluidization is illustrated by three numerical examples, in which the system of conservation laws is solved for N  = 2, N  = 3 and N  = 5, respectively. These examples illustrate the effects of bed expansion and layer inversion caused by successively increasing the applied fluidization velocity and show that the predicted fluidized states are indeed attained.

[1]  R. Jackson,et al.  The Dynamics of Fluidized Particles , 2000 .

[2]  Mohammad Asif The complete segregation model for a liquid fluidized bed: formulation and related issues , 2004 .

[3]  Raimund Bürger,et al.  Numerical simulation of the settling of polydisperse suspensions of spheres , 2000 .

[4]  M. T. Kamel,et al.  The distribution of velocities of a concentric sphere in a dilute dispersion of spheres sedimenting in a spherical container , 1993 .

[5]  R. A. Ford,et al.  Simulation of Sedimentation of Polydisperse Suspensions: A Particle-Based Approach , 2005 .

[6]  Raimund Bürger,et al.  Model equations for gravitational sedimentation-consolidation processes , 2000 .

[7]  R. A. Ford,et al.  Simulation of Sedimentation of Monodisperse and Polydisperse Suspensions , 2003 .

[8]  Raimund Bürger,et al.  Model Equations and Instability Regions for the Sedimentation of Polydisperse Suspensions of Spheres , 2002 .

[9]  Kevin P. Galvin,et al.  Particle classification in the reflux classifier. , 2001 .

[10]  Monika Bargieł,et al.  A three-parameter Markov model for sedimentation III. A stochastic Runge—Kutta method for computing first-passage times , 1994 .

[11]  John D. Towers,et al.  Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units , 2004, Numerische Mathematik.

[12]  Wolfgang L. Wendland,et al.  Analysis and Simulation of Multifield Problems , 2003 .

[13]  Elham Doroodchi,et al.  Pilot plant trial of the reflux classifier , 2002 .

[14]  P. Mazur,et al.  Many-sphere hydrodynamic interactions: IV. Wall-effects inside a spherical container , 1985 .

[15]  Hong Yong Sohn,et al.  The effect of particle size distribution on packing density , 1968 .

[16]  R. A. Ford,et al.  Simulation of sedimentation of bidisperse suspensions , 2004 .

[17]  Xinhui Hu Prediction of the inversion velocity in the binary-solid liquid fluidized bed , 2002 .

[18]  Bandaru V. Ramarao,et al.  On instabilities arising during sedimentation of two-component mixtures of solids , 1984, Journal of Fluid Mechanics.

[19]  P. Foscolo,et al.  Generalized friction factor and drag coefficient correlations for fluid-particle interactions , 1985 .

[20]  Jacob H. Masliyah,et al.  ]Hindered settling in a multi-species particle system , 1979 .

[21]  M. J. Lockett,et al.  Sedimentation of Binary Particle Mixtures , 1979 .

[22]  Raimund Bürger,et al.  Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions , 2004 .

[23]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[24]  Mohammad Asif,et al.  Predicting binary-solid fluidized bed behavior using averaging approaches , 2002 .

[25]  E. J. Hinch,et al.  Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres , 1995 .

[26]  Kevin P. Galvin,et al.  Applications of the Reflux Classifier in solid–liquid operations , 2004 .

[27]  Yan Sun,et al.  Modeling of sedimentation of polydisperse spherical beads with a broad size distribution , 2003 .

[28]  V. S. Patwardhan,et al.  Sedimentation and liquid fluidization of solid particles of different sizes and densities , 1985 .

[29]  Robert H. Davis Hydrodynamic diffusion of suspended particles: a symposium , 1996, Journal of Fluid Mechanics.

[30]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[31]  R. Bürger,et al.  On gravity and centrifugal settling of polydisperse suspensions forming compressible sediments , 2003 .

[32]  R. Bürger,et al.  Central difference solutions of the kinematic model of settling of polydisperse suspensions and three-dimensional particle-scale simulations , 2001 .

[33]  Tadatoshi Chiba,et al.  A comprehensive interpretation of solid layer inversion in liquid fluidised beds , 1982 .

[34]  Krishnaswamy Nandakumar,et al.  Gravity separation of bidisperse suspensions: Light and heavy particle species , 1987 .

[35]  Raimund Bürger,et al.  Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixtures , 2004 .

[36]  Liang-Shih Fan,et al.  On the model equations of Gibilaro and Foscolo with corrected buoyancy force , 1992 .

[37]  P. Mazur Many-sphere hydrodynamic interactions , 1983 .

[38]  D. Haar,et al.  Elements of Thermodynamics , 1966 .

[39]  P. Umbanhowar,et al.  An effective gravitational temperature for sedimentation , 2001, Nature.

[40]  G. Batchelor,et al.  Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory , 1982, Journal of Fluid Mechanics.

[41]  Kevin P. Galvin,et al.  Influence of parallel inclined plates in a liquid fluidized bed system , 2002 .

[42]  P. Mazur,et al.  Many-sphere hydrodynamic interactions: III. The influence of a plane wall , 1984 .

[43]  D. K. Pickard,et al.  A Markov Model for Sedimentation: Fundamental Issues and Insights , 1987 .

[44]  R. Bürger,et al.  Sedimentation and Thickening : Phenomenological Foundation and Mathematical Theory , 1999 .

[45]  B. K. Dutta,et al.  Effective voidage model of a binary solid-liquid fluidized bed: Application to solid layer inversion , 2002 .

[46]  M. Asif A simple predictive model of layer inversion in binary solid–liquid fluidized beds , 1998 .

[47]  M. T. Kamel,et al.  The distribution of kth nearest neighbours and its application to cluster settling in dispersions of equal spheres , 1979 .

[48]  M. T. Kamel,et al.  Mean velocities in polydisperse suspensions , 1997 .

[49]  D. Gidaspow Multiphase Flow and Fluidization , 1994 .

[50]  A. D. Fitt Mixed systems of conservation laws in industrial mathematical modelling motion , 1996 .

[51]  Mohammad. Rasul,et al.  Segregation in Binary and Ternary Liquid Fluidized Beds , 2002 .

[52]  Howard Brenner,et al.  The Stokes resistance of a slightly deformed sphere , 1964 .

[53]  Raimund Bürger,et al.  Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..

[54]  L. G. Gibilaro Fluidization-dynamics : the formulation and applications of a predictive theory for the fluidized state , 2001 .

[55]  B. Glasser,et al.  Hydrodynamics of a uniform liquid-fluidized bed containing a binary mixture of particles , 2002 .

[56]  G. Batchelor,et al.  Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results , 1982, Journal of Fluid Mechanics.

[57]  G. Batchelor,et al.  Structure formation in bidisperse sedimentation , 1986, Journal of Fluid Mechanics.

[58]  A. Acrivos,et al.  The stokes flow past an arbitrary particle: The slightly deformed sphere , 1964 .

[59]  É. Guazzelli,et al.  Velocity fluctuations of a heavy sphere falling through a sedimenting suspension , 1996 .

[60]  D. K. Pickard,et al.  A Markov model for sedimentation , 1977 .

[61]  D. K. Pickard,et al.  A three‐parameter markov model for sedimentation , 1977 .