From Glushkov WFAs to Rational Expressions

In this paper, we extend to the multiplicity case a characterization of Glushkov automata, and show the existence of a normal form for rational expressions. These results are used to obtain a rational expression of small size from a Glushkov WFA.

[1]  Pascal Caron,et al.  Star normal form, rational expressions, and glushkov WFAs properties , 2002, CIAA'02.

[2]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[3]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[4]  Mehryar Mohri,et al.  Finite-State Transducers in Language and Speech Processing , 1997, CL.

[5]  Pascal Caron,et al.  Characterization of Glushkov automata , 2000, Theor. Comput. Sci..

[6]  Raffaele Giancarlo,et al.  On the Determinization of Weighted Finite Automata , 2000, SIAM J. Comput..

[7]  Michael Riley,et al.  Speech Recognition by Composition of Weighted Finite Automata , 1996, ArXiv.

[8]  Jarkko Kari,et al.  Digital Images and Formal Languages , 1997, Handbook of Formal Languages.

[9]  Anne Brüggemann-Klein Regular Expressions into Finite Automata , 1993, Theor. Comput. Sci..

[10]  Robert McNaughton,et al.  Regular Expressions and State Graphs for Automata , 1960, IRE Trans. Electron. Comput..

[11]  Shimon Even,et al.  Ambiguity in Graphs and Expressions , 1971, IEEE Transactions on Computers.

[12]  Pascal Caron,et al.  Glushkov Construction For Series: The Non Commutative Case , 2003, Int. J. Comput. Math..