An improved SPH scheme for cosmological simulations

We present an implementation of smoothed particle hydrodynamics (SPH) with improved accuracy for simulations of galaxies and the large-scale structure. In particular, we implement and test a vast majority of SPH improvement in the developer version of GADGET-3. We use the Wendland kernel functions, a particle wake-up time-step limiting mechanism and a time-dependent scheme for artificial viscosity including high-order gradient computation and shear flow limiter. Additionally, we include a novel prescription for time-dependent artificial conduction, which corrects for gravitationally induced pressure gradients and improves the SPH performance in capturing the development of gas-dynamical instabilities. We extensively test our new implementation in a wide range of hydrodynamical standard tests including weak and strong shocks as well as shear flows, turbulent spectra, gas mixing, hydrostatic equilibria and self-gravitating gas clouds. We jointly employ all modifications;however, when necessary we study the performance of individual code modules. We approximate hydrodynamical states more accurately and with significantly less noise than standard GADGET-SPH. Furthermore, the new implementation promotes the mixing of entropy between different fluid phases, also within cosmological simulations. Finally, we study the performance of the hydrodynamical solver in the context of radiative galaxy formation and non-radiative galaxy cluster formation. We find galactic discs to be colder and more extended and galaxy clusters showing entropy cores instead of steadily declining entropy profiles. In summary, we demonstrate that our improved SPH implementation overcomes most of the undesirable limitations of standard GADGET-SPH, thus becoming the core of an efficient code for large cosmological simulations.

[1]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[2]  Daniel J. Price Modelling discontinuities and Kelvin-Helmholtz instabilities in SPH , 2007, J. Comput. Phys..

[3]  Stefano Borgani,et al.  Formation of Galaxy Clusters , 2012, 1205.5556.

[4]  G. Stinson,et al.  The enrichment of the intergalactic medium with adiabatic feedback – I. Metal cooling and metal diffusion , 2009, 0910.5956.

[5]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[6]  Vicent Quilis,et al.  A new multidimensional adaptive mesh refinement hydro + gravity cosmological code , 2004 .

[7]  Daniel J. Price Resolving high Reynolds numbers in SPH simulations of subsonic turbulence , 2011, 1111.1255.

[8]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[9]  Junichiro Makino,et al.  A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS , 2012, 1202.4277.

[10]  V. Biffi,et al.  The role of the artificial conductivity in SPH simulations of galaxy clusters: effects on the ICM properties , 2014, 1410.8529.

[11]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[12]  R. Valdarnini Hydrodynamic capabilities of an SPH code incorporating an artificial conductivity term with a gravity-based signal velocity , 2012, 1207.6980.

[13]  S. Imboden,et al.  Splotch: visualizing cosmological simulations , 2008, 0807.1742.

[14]  P. Hopkins,et al.  A general class of Lagrangian smoothed particle hydrodynamics methods and implications for fluid mixing problems , 2012, 1206.5006.

[15]  Peter A. Thomas,et al.  Multiphase smoothed-particle hydrodynamics , 2001 .

[16]  A. Whitworth,et al.  The effect of Poisson noise on SPH calculations , 2009 .

[17]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[18]  C. Fryer,et al.  Generating Optimal Initial Conditions for Smoothed Particle Hydrodynamics Simulations , 2012, Publications of the Astronomical Society of Australia.

[19]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[20]  Claudio Gheller,et al.  High-performance astrophysical visualization using Splotch , 2010, ICCS.

[21]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[22]  Jeremiah P. Ostriker,et al.  A piecewise parabolic method for cosmological hydrodynamics , 1995 .

[23]  A Switch for Artificial Resistivity and Other Dissipation Terms , 2013, 1310.4260.

[24]  H. Trac,et al.  A moving frame algorithm for high Mach number hydrodynamics , 2003, astro-ph/0309599.

[25]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[26]  Ludwig Oser,et al.  SPHGal: smoothed particle hydrodynamics with improved accuracy for galaxy simulations , 2014 .

[27]  P. Hopkins A new class of accurate, mesh-free hydrodynamic simulation methods , 2014, 1409.7395.

[28]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[29]  C. McNally,et al.  A WELL-POSED KELVIN–HELMHOLTZ INSTABILITY TEST AND COMPARISON , 2011, 1111.1764.

[30]  W. Hillebrandt,et al.  Stellar GADGET: a smoothed particle hydrodynamics code for stellar astrophysics and its application to Type Ia supernovae from white dwarf mergers , 2012, 1205.5806.

[31]  K. Dolag,et al.  Anisotropic thermal conduction in galaxy clusters with MHD in Gadget , 2014, 1412.6533.

[32]  D. Balsara von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms , 1995 .

[33]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[34]  S. Borgani,et al.  How does gas cool in DM halos , 2007, 0710.2473.

[35]  F. Kitaura,et al.  Digital Signal Processing in Cosmology , 2009, 0901.3043.

[36]  J. Makino,et al.  A NECESSARY CONDITION FOR INDIVIDUAL TIME STEPS IN SPH SIMULATIONS , 2008, 0808.0773.

[37]  W. Dehnen,et al.  Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.

[38]  P. Hopkins,et al.  Accurate, meshless methods for magnetohydrodynamics , 2015, 1505.02783.

[39]  S. Borgani,et al.  COOL CORE CLUSTERS FROM COSMOLOGICAL SIMULATIONS , 2015, 1509.04247.

[40]  Riccardo Brunino,et al.  Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics , 2011 .

[41]  F. Vazza,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005 .

[42]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[43]  Stephan Rosswog,et al.  Astrophysical smooth particle hydrodynamics , 2009, 0903.5075.

[44]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2002 .

[45]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .

[46]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[47]  Frazer R. Pearce,et al.  nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models , 2015, 1503.06065.

[48]  Prabhu Ramachandran,et al.  SPH Entropy Errors and the Pressure Blip , 2013, ArXiv.

[49]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[50]  V. Quilis,et al.  Galaxy cluster mergers , 2009, 0906.4024.

[51]  O. Agertz,et al.  Resolving mixing in smoothed particle hydrodynamics , 2009, 0906.0774.

[52]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[53]  Sergei Nayakshin,et al.  Kelvin-Helmholtz instabilities with Godunov smoothed particle hydrodynamics , 2010 .

[54]  A. Evrard Beyond N-body: 3D cosmological gas dynamics , 1988 .

[55]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[56]  Volker Springel,et al.  An Ideal Mass Assignment Scheme for Measuring the Power Spectrum with Fast Fourier Transforms , 2008, 0804.0070.

[57]  Andreas Bauer,et al.  Shocking results without shocks: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations , 2011, 1109.4413.

[58]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[59]  K. Dolag,et al.  New constraints on modelling the random magnetic field of the MW , 2014, 1409.5120.

[60]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[61]  J. Read,et al.  The formation of entropy cores in non-radiative galaxy cluster simulations: smoothed particle hydrodynamics versus adaptive mesh refinement , 2014 .

[62]  K. Dolag,et al.  Strong magnetic fields and large rotation measures in protogalaxies from supernova seeding , 2013, 1308.3440.

[63]  S. Rosswog,et al.  Boosting the accuracy of SPH techniques : Newtonian and special-relativistic tests , 2014, 1405.6034.

[64]  J. Silk,et al.  Cosmology and large scale structure , 1996 .

[65]  H. Dejonghe,et al.  Kelvin-Helmholtz instabilities in smoothed particle hydrodynamics , 2010, 1006.1767.

[66]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[67]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[68]  Y. P. Jing Correcting for the Alias Effect When Measuring the Power Spectrum Using a Fast Fourier Transform , 2004 .

[69]  Joseph John Monaghan,et al.  SPH and Riemann Solvers , 1997 .

[70]  Walter Dehnen,et al.  Inviscid smoothed particle hydrodynamics , 2010 .

[71]  F. Vazza The entropy core in galaxy clusters: numerical and physical effects in cosmological grid simulations , 2010 .

[72]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[73]  Daniel J. Price,et al.  Modelling shear flows with smoothed particle hydrodynamics and grid‐based methods , 2010 .

[74]  James Wadsley,et al.  On the treatment of entropy mixing in numerical cosmology , 2008 .

[75]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[76]  A. Lazarian,et al.  Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration , 2007, astro-ph/0703591.

[77]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[78]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, J. Open Source Softw..

[79]  C. D. Vecchia,et al.  Implementation of feedback in smoothed particle hydrodynamics: towards concordance of methods , 2012 .

[80]  Prabhu Ramachandran,et al.  Approximate Riemann solvers for the Godunov SPH (GSPH) , 2014, J. Comput. Phys..

[81]  V. Springel Smoothed Particle Hydrodynamics in Astrophysics , 2010, 1109.2219.

[82]  M. Steinmetz,et al.  The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions , 1999, astro-ph/9906160.

[83]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[84]  J. Read,et al.  SPHS: Smoothed Particle Hydrodynamics with a higher order dissipation switch , 2011, 1111.6985.

[85]  E. Komatsu,et al.  Universal gas density and temperature profile , 2001, astro-ph/0106151.