Codes of Desarguesian projective planes of even order, projective triads and (q+t,t)-arcs of type (0,2,t)

Abstract We study the binary dual codes associated with Desarguesian projective planes PG ( 2 , q ) , with q = 2 h , and their links with ( q + t , t ) -arcs of type ( 0 , 2 , t ) , by considering the elements of F q as binary h-tuples. Using a correspondence between ( q + t , t ) -arcs of type ( 0 , 2 , t ) and projective triads in PG ( 2 , q ) , q even, we present an alternative proof of the classification result on projective triads. We construct a new infinite family of ( q + t , t ) -arcs of type ( 0 , 2 , t ) with t = q 4 , using a particular form of the primitive polynomial of the field F q .

[1]  Martin Bossert,et al.  An improved decoding algorithm for finite-geometry LDPC codes , 2009, IEEE Transactions on Communications.

[2]  I.B. Djordjevic,et al.  Projective geometry LDPC codes for ultralong-haul WDM high-speed transmission , 2003, IEEE Photonics Technology Letters.

[3]  András Gács,et al.  On (q + t, t)-Arcs of Type (0, 2, t) , 2003, Des. Codes Cryptogr..

[4]  Zhenyu Liu,et al.  LDPC codes from generalized polygons , 2005, IEEE Transactions on Information Theory.

[5]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[6]  Sarah J. Johnson,et al.  Codes for iterative decoding from partial geometries , 2002, Proceedings IEEE International Symposium on Information Theory,.

[7]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[8]  Jon-Lark Kim,et al.  Small weight codewords in LDPC codes defined by (dual) classical generalized quadrangles , 2007, Des. Codes Cryptogr..

[9]  G. Eric Moorhouse Bruck nets, codes, and characters of loops , 1991, Des. Codes Cryptogr..

[10]  Chen Zhang,et al.  Regular LDPC Codes from Semipartial Geometries , 2008 .

[11]  S. Sankaranarayanan,et al.  Projective-plane iteratively decodable block codes for WDM high-speed long-haul transmission systems , 2004, Journal of Lightwave Technology.

[12]  Han Wenbao,et al.  Character sums over Galois rings and primitive polynomials over finite fields , 2004 .

[13]  Peter Vandendriessche,et al.  LDPC codes associated with linear representations of geometries , 2010, Adv. Math. Commun..

[14]  Peter Vandendriessche,et al.  Some low-density parity-check codes derived from finite geometries , 2010, Des. Codes Cryptogr..

[15]  Jennifer D. Key,et al.  Designs and their codes , 1992, Cambridge tracts in mathematics.

[16]  Leo Storme,et al.  Small weight codewords in the LDPC codes arising from linear representations of geometries , 2009 .

[17]  Gábor Korchmáros,et al.  On (q + t)-arcs of type (0, 2, t) in a desarguesian plane of order q , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[19]  Jennifer D. Key,et al.  An upper bound for the minimum weight of the dual codes of desarguesian planes , 2009, Eur. J. Comb..

[20]  K.J.C. Smith,et al.  On the p-rank of the incidence matrix of points and hyperplanes in a finite projective geometry , 1969 .

[21]  Jirapha Limbupasiriporn Partial Permutation Decoding for Codes from Designs and Finite Geometries , 2005 .