Prediction of the crystal structures of perovskites using the software program SPuDS.

The software program SPuDS has been developed to predict the crystal structures of perovskites, including those distorted by tilting of the octahedra. The user inputs the composition and SPuDS calculates the optimal structure in ten different Glazer tilt systems. This is performed by distorting the structure to minimize the global instability index, while maintaining rigid octahedra. The location of the A-site cation is chosen so as to maximize the symmetry of its coordination environment. In its current form SPuDS can handle up to four different A-site cations in the same structure, but only one octahedral ion. Structures predicted by SPuDS are compared with a number of previously determined structures to illustrate the accuracy of this approach. SPuDS is also used to examine the prospects for synthesizing new compounds in tilt systems with multiple A-site coordination geometries (a(+)a(+)a(+), a(0)b(+)b(+), a(0)b(-)c(+)).

[1]  B. Bochu,et al.  Synthèse et caractérisation cristallographique et physique d'une série de composés ACu3Ru4O12 de type perovskite , 1980 .

[2]  R. Nelmes,et al.  High-resolution studies of cubic perovskites by elastic neutron diffraction. II. SrTiO3, KMnF3, RbCaF3 and CsPbCl3 , 1981 .

[3]  B. Chakoumakos,et al.  High-temperature phase transitions in SrHfO 3 , 1999 .

[4]  J. Goodenough,et al.  LaMnO 3+ δ Revisited , 1997 .

[5]  Alexei A. Maradudin,et al.  Space groups for solid state scientists , 1979 .

[6]  B. Bochu,et al.  Synthèse et caractérisation d'une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12 , 1979 .

[7]  N. Setter,et al.  Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity , 1993 .

[8]  G. Thornton,et al.  A neutron diffraction study of LaCoO3 in the temperature range 4.2 , 1986 .

[9]  R. Kanno,et al.  Structural characterization of the orthorhombic perovskites: [ARuO3 (A = Ca, Sr, La, Pr)] , 1994 .

[10]  Hwang,et al.  Pressure effects on the magnetoresistance in doped manganese perovskites. , 1995, Physical review. B, Condensed matter.

[11]  A. Glazer,et al.  Simple ways of determining perovskite structures , 1975 .

[12]  D. Savytskii,et al.  Crystal structure of GdFeO3-type rare earth gallates and aluminates , 1999 .

[13]  M. T. Casais,et al.  Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. , 2000, Inorganic chemistry.

[14]  B. Chakoumakos,et al.  Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition , 2000 .

[15]  C. Howard,et al.  Powder neutron diffraction study of the high temperature phase transitions in NaTaO3 , 1999 .

[16]  Á. M. Pendás,et al.  Ions in crystals: The topology of the electron density in ionic materials.II. The cubic alkali halide perovskites , 1997 .

[17]  J. Pickardt,et al.  Röntgenuntersuchung von Einkristallen ternärer Lanthanoid-Vanadium(III)-Oxide LnVO3 (Ln = Gd, Dy, Er) , 1988 .

[18]  L. Brixner X-ray study and electrical properties of system BaxSr(1−x)MoO3 , 1960 .

[19]  Susan Trolier-McKinstry,et al.  Sensors, Actuators, and Smart Materials , 1993 .

[20]  K. Yvon,et al.  Cubic CsCaH3 and hexagonal RbMgH3: new examples of fluoride-related perovskite-type hydrides , 1999 .

[21]  B. Chakoumakos,et al.  High-temperature phase transitions in SrZrO 3 , 1999 .

[22]  J. Parise,et al.  High pressure synthesis of a new chromite, ScCrO3 , 1997 .

[23]  J. Rodríguez-Carvajal,et al.  Neutron-diffraction study of RNiO3 (R=La,Pr,Nd,Sm): Electronically induced structural changes across the metal-insulator transition. , 1992, Physical review. B, Condensed matter.

[24]  J. Rodríguez-Carvajal,et al.  Structural characterization of R2BaCuO5 (R = Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Eu and Sm) oxides by X-ray and neutron diffraction , 1992 .

[25]  Margaret L. Gardel,et al.  Giant dielectric constant response in a copper-titanate , 2000 .

[26]  C. Howard,et al.  The orthorhombic and rhombohedral phases of - a neutron powder diffraction study , 1999 .

[27]  G. Meyer,et al.  Metallothermische Reduktion des Tribromids und ‐iodids von Dysprosium mit Alkalimetallen , 1993 .

[28]  A. Smith,et al.  Some mixed metal oxides of perovskite structure , 1960 .

[29]  B. Chakoumakos,et al.  Phase transitions in perovskite at elevated temperatures - a powder neutron diffraction study , 1999 .

[30]  K. Knight,et al.  On the lattice parameters of sodium niobate at room temperature and above , 1999 .

[31]  A. Clearfield The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides , 1963 .

[32]  R. Nelmes,et al.  Extinction corrections for a highly perfect crystal (SrTiO3) , 1981 .

[33]  A. Ratuszna,et al.  Crystal structure of cyanometallates Me3[Co(CN)6]2 and KMe[Fe(CN)6] with Me=Mn2+, Ni2+, Cu2+ , 1999, Powder Diffraction.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  N. Ross,et al.  High pressure study of ScAlO3 perovskite , 1998 .

[36]  R. Hoppe,et al.  Fluorargentate(II) der Alkalimetalle , 1971 .

[37]  W. Hönle,et al.  Preparation, crystal structures, and electronic properties of LiGaCl3 and LiGaI3 , 1988 .

[38]  F. Cyrot-Lackmann,et al.  Preparation and structure of the compounds SrVO3 and Sr2VO4 , 1990 .

[39]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[40]  M. T. Casais,et al.  METAL-INSULATOR TRANSITIONS, STRUCTURAL AND MICROSTRUCTURAL EVOLUTION OF RNIO3 (R = SM, EU, GD, DY, HO, Y) PEROVSKITES : EVIDENCE FOR ROOM-TEMPERATURE CHARGE DISPROPORTIONATION IN MONOCLINIC HONIO3 AND YNIO3 , 1999 .

[41]  H. Eick,et al.  The synthesis, structure and characterization of SrMoO2.615N0.4 , 1992 .

[42]  Robert E. Newnham,et al.  Molecular Mechanisms in Smart Materials , 1997 .