Application of Maxeler DataFlow Supercomputing to Spherical Code Design
暂无分享,去创建一个
[1] Achill Schürmann,et al. Experimental Study of Energy-Minimizing Point Configurations on Spheres , 2009, Exp. Math..
[2] Carlos R. P. Hartmann,et al. Iteratively maximum likelihood decodable spherical codes and a method for their construction , 1988, IEEE Trans. Inf. Theory.
[3] John K. Karlof. Decoding spherical codes for the Gaussian channel , 1993, IEEE Trans. Inf. Theory.
[4] Edward De Bono,et al. Serious Creativity: Using the Power of Lateral Thinking to Create New Ideas , 1992 .
[5] Veljko M. Milutinovic,et al. Comparing Controlflow and Dataflow for Tensor Calculus: Speed, Power, Complexity, and MTBF , 2018, ISC Workshops.
[6] Prof. Dr. Veljko Milutinovic,et al. DataFlow Supercomputing Essentials , 2017, Computer Communications and Networks.
[7] David Silverstein,et al. Insourcing Innovation: How to Achieve Competitive Excellence Using TRIZ , 2007 .
[8] D. Lazi. Class of block codes for the Gaussian channel , 1980 .
[9] Jeffrey Wang. Finding and Investigating Exact Spherical Codes , 2009, Exp. Math..
[10] T. Tarnai,et al. Improved packing of equal circles on a sphere and rigidity of its graph , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] Henry Cohn,et al. Universally optimal distribution of points on spheres , 2006, math/0607446.
[12] Tony Buzan,et al. Use Your Head , 1974 .
[13] Eiichi Bannai,et al. Uniqueness of Certain Spherical Codes , 1981, Canadian Journal of Mathematics.
[14] Michael A. Orloff,et al. Inventive Thinking through TRIZ: A Practical Guide , 2006 .
[15] Henry Cohn,et al. Uniqueness of the (22,891,1/4) spherical code , 2006, math/0607448.
[16] Oleg R. Musin,et al. The Tammes Problem for N = 14 , 2014, Exp. Math..
[17] Jon Hamkins,et al. Asymptotically dense spherical codes - Part II: Laminated spherical codes , 1997, IEEE Trans. Inf. Theory.
[18] Veljko M. Milutinovic,et al. Chapter One - A Systematic Approach to Generation of New Ideas for PhD Research in Computing , 2017, Adv. Comput..
[19] S. Torquato,et al. Rigidity of Spherical Codes , 2011, 1102.5060.
[20] A. G. Burr. Spherical codes for M-ary code shift keying , 1989 .
[21] Jon Hamkins,et al. Asymptotically dense spherical codes - Part h Wrapped spherical codes , 1997, IEEE Trans. Inf. Theory.
[22] D. Kottwitz. The densest packing of equal circles on a sphere , 1991 .
[23] David L. Kepert,et al. The optimal packing of circles on a sphere , 1991 .
[24] N. J. A. Sloane,et al. Tables of sphere packings and spherical codes , 1981, IEEE Trans. Inf. Theory.
[25] Semyon Savransky,et al. Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving , 2000 .
[26] Oleg R. Musin,et al. The Strong Thirteen Spheres Problem , 2010, Discret. Comput. Geom..
[27] Jon Hamkins,et al. Gaussian source coding with spherical codes , 2002, IEEE Trans. Inf. Theory.
[28] Alexey A. Glazyrin,et al. Stability of optimal spherical codes , 2017, ArXiv.
[29] Veljko M. Milutinovic,et al. FPGA accelerator for floating-point matrix multiplication , 2012, IET Comput. Digit. Tech..
[30] Vivek K. Goyal,et al. On concentric spherical codes and permutation codes with multiple initial codewords , 2009, 2009 IEEE International Symposium on Information Theory.
[31] Christine Bachoc,et al. Optimality and uniqueness of the (4, 10, 1/6) spherical code , 2007, J. Comb. Theory, Ser. A.
[32] J. Lindner,et al. On The Construction of Non-coherent Space Time Codes from High-dimensional Spherical Codes , 2006, 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.