Emerging insights into the genesis of epilepsy

Epilepsies are a diverse collection of brain disorders that affect 1–2% of the population. Current therapies are unsatisfactory as they provide only symptomatic relief, are effective in only a subset of affected individuals, and are often accompanied by persistent toxic effects. It is hoped that insight into the cellular and molecular mechanisms of epileptogenesis will lead to new therapies, prevention, or even a cure. Emerging insights point to alterations of synaptic function and intrinsic properties of neurons as common mechanisms underlying the hyperexcitability in diverse forms of epilepsy.

[1]  H. Houston Merritt,et al.  A NEW SERIES OF ANTICONVULSANT DRUGS TESTED BY EXPERIMENTS ON ANIMALS , 1938 .

[2]  H. Merritt,et al.  SODIUM DIPHENYL HYDANTOINATE IN THE TREATMENT OF CONVULSIVE DISORDERS , 1938 .

[3]  L. Goodman,et al.  The Pharmacological Basis of Therapeutics , 1941 .

[4]  N. Kopeloff,et al.  RECURRENT CONVULSIVE SEIZURES IN ANIMALS PRODUCED IMMUNOLOGIC AND CHEMICAL MEANS , 1942 .

[5]  T. Rasmussen,et al.  Focal seizures due to chronic localized encephalitis , 1958, Neurology.

[6]  A. Scheibel,et al.  Degeneration and regeneration of the nervous system , 1960 .

[7]  G F Ayala,et al.  Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. , 1973, Brain research.

[8]  B. Meldrum,et al.  Systemic factors and epileptic brain damage. Prolonged seizures in paralyzed, artificially ventilated baboons. , 1973, Archives of neurology.

[9]  R. Adams,et al.  Principles of Neurology , 1996 .

[10]  S. Laurberg,et al.  Lesion‐induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats , 1981, The Journal of comparative neurology.

[11]  R. C. Collins,et al.  Functional anatomy of limbic seizures: Focal discharges from medial entorhinal cortex in rat , 1983, Brain Research.

[12]  R. Macdonald,et al.  Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. , 1983, The Journal of pharmacology and experimental therapeutics.

[13]  M. Leider Goodman & Gilman's The Pharmacological Basis of Therapeutics , 1985 .

[14]  D. Tauck,et al.  Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  R. Miles,et al.  Excitatory synaptic interactions between CA3 neurones in the guinea‐pig hippocampus. , 1986, The Journal of physiology.

[16]  W. Stigelman,et al.  Goodman and Gilman's the Pharmacological Basis of Therapeutics , 1986 .

[17]  R. Dingledine,et al.  Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. , 1988, Journal of neurophysiology.

[18]  J. Cavazos,et al.  Synaptic reorganization in the hippocampus induced by abnormal functional activity. , 1988, Science.

[19]  C. Bruton,et al.  The neuropathology of temporal lobe epilepsy , 1988 .

[20]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[21]  C. Gall,et al.  Limbic seizures increase neuronal production of messenger RNA for nerve growth factor. , 1989, Science.

[22]  G. Cascino,et al.  Mossy fiber synaptic reorganization in the epileptic human temporal lobe , 1989, Annals of neurology.

[23]  J. H. Kim,et al.  Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy , 1989, Brain Research.

[24]  M. Leppert,et al.  Benign familial neonatal convulsions linked to genetic markers on chromosome 20 , 1989, Nature.

[25]  Jorge Eslava‐Cobos,et al.  Experience with the International League Against Epilepsy Proposals for Classification of Epileptic Seizures and the Epilepsies and Epileptic Syndromes in a Pediatric Outpatient Epilepsy Clinic , 1989, Epilepsia.

[26]  CR Houser,et al.  Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  O. Lindvall,et al.  Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis , 1991, Neuron.

[28]  G. M. Peterson,et al.  Intragranular mossy fibers in rats and gerbils from synapses with the somata and proximal dendrites of basket cells in the dentate gyrus , 1991, Hippocampus.

[29]  T. Curran,et al.  Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. , 1991, Annual review of neuroscience.

[30]  The Dentate Gyrus and its Role in Seizures. Symposium. Irvine, California, February 1991. , 1992, Epilepsy research. Supplement.

[31]  P. O'Connell,et al.  Genetic heterogeneity in benign familial neonatal convulsions: identification of a new locus on chromosome 8q. , 1993, American journal of human genetics.

[32]  A. Vezzani,et al.  Increased Expression of GAP‐43, Somatostatin and Neuropeptide Y mRNA in the Hippocampus During Development of Hippocampal Kindling in Rats , 1993, The European journal of neuroscience.

[33]  D. Hosford,et al.  Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  Y. Ben-Ari,et al.  Epilepsy induced collateral sprouting of hippocampal mossy fibers: Does it induce the development of ectopic synapses with granule cell dendrites? , 1993, Hippocampus.

[35]  Terri L. Gilbert,et al.  The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins , 1993, Neuron.

[36]  R. Sankar,et al.  Pathophysiological Mechanisms of Brain Damage from Status Epilepticus , 1993, Epilepsia.

[37]  T. Kurashige,et al.  Proposal for Revised Classification of Epilepsies and Epileptic Syndromes , 1989, No to hattatsu = Brain and development.

[38]  J. McNamara,et al.  Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. , 1994, Science.

[39]  Molecular Neurobiology of Epilepsy, Epilepsy Research Supplement No. 9, , 1994 .

[40]  J. Cavazos,et al.  Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  Y. Ben-Ari,et al.  Kainate-induced apoptotic cell death in hippocampal neurons , 1994, Neuroscience.

[42]  Paul Antoine Salin,et al.  Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  I. Scheffer,et al.  Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q13.2 , 1995, Nature Genetics.

[44]  H. Otsubo,et al.  Chronic encephalitis and epilepsy (Rasmussen's encephalitis) , 1995, Neurology.

[45]  M. Okazaki,et al.  Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: Visualization after retrograde transport of biocytin , 1995, The Journal of comparative neurology.

[46]  S. Rogers,et al.  Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site , 1995, Neuron.

[47]  I. Scheffer,et al.  A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy , 1995, Nature Genetics.

[48]  T. Gloveli,et al.  Spread of low Mg2+ induced epileptiform activity from the rat entorhinal cortex to the hippocampus after kindling studied in vitro , 1996, Neuroscience Letters.

[49]  J. McNamara,et al.  Plasmapheresis in Rasmussen's encephalitis , 1996, Neurology.

[50]  O. Steinlein,et al.  An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics , 1996, FEBS letters.

[51]  R. S. Sloviter,et al.  Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat , 1996, The Journal of comparative neurology.

[52]  F. Dudek,et al.  Electrographic Seizures and New Recurrent Excitatory Circuits in the Dentate Gyrus of Hippocampal Slices from Kainate-Treated Epileptic Rats , 1996, The Journal of Neuroscience.

[53]  J. Lacaille,et al.  Axonal Sprouting of CA1 Pyramidal Cells in Hyperexcitable Hippocampal Slices of Kainate‐treated Rats , 1996, The European journal of neuroscience.

[54]  G. Landes,et al.  Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias , 1996, Nature Genetics.

[55]  L. Role,et al.  Nicotinic Receptors in the Development and Modulation of CNS Synapses , 1996, Neuron.

[56]  Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1) , 1996, Science.

[57]  D. Debanne,et al.  Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: Implications for the genesis of posttraumatic epilepsy , 1997, Nature Medicine.

[58]  P. Coumel,et al.  A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome , 1997, Nature Genetics.

[59]  S. Wonnacott,et al.  Presynaptic nicotinic ACh receptors , 1997, Trends in Neurosciences.

[60]  H. Vinters,et al.  Local-clonal expansion of infiltrating T lymphocytes in chronic encephalitis of Rasmussen. , 1997, Journal of immunology.

[61]  渡部 芳徳 Null mutation of c-fos impairs structural and functional plasticities in the kindling model of epilepsy , 1997 .

[62]  L. Ptáček,et al.  Channelopathies: ion channel disorders of muscle as a paradigm for paroxysmal disorders of the nervous system , 1997, Neuromuscular Disorders.

[63]  R. Racine,et al.  Long-term potentiation trains induce mossy fiber sprouting , 1997, Brain Research.

[64]  D Bertrand,et al.  An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. , 1997, Human molecular genetics.

[65]  M Kokaia,et al.  Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[66]  D. Geschwind,et al.  Dentate Granule Cell Neurogenesis Is Increased by Seizures and Contributes to Aberrant Network Reorganization in the Adult Rat Hippocampus , 1997, The Journal of Neuroscience.

[67]  V. Gerzanich,et al.  Mutation Causing Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Alters Ca2+ Permeability, Conductance, and Gating of Human α4β2 Nicotinic Acetylcholine Receptors , 1997, The Journal of Neuroscience.

[68]  Long-term selective IgG immunoadsorption improves Rasmussen's encephalitis , 1998, Journal of Neuroimmunology.

[69]  T Sutula,et al.  Synaptic and axonal remodeling of mossy fibers in the hilus and supragranular region of the dentate gyrus in kainate‐treated rats , 1998, The Journal of comparative neurology.

[70]  J. McNamara,et al.  Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat , 1998, Neuroscience Letters.

[71]  C. Kubisch,et al.  Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy , 1998, Nature.

[72]  R. Racine,et al.  Time course for kindling-induced changes in the hilar area of the dentate gyrus: reactive gliosis as a potential mechanism , 1998, Brain Research.

[73]  Samuel F. Berkovic,et al.  Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B , 1998, Nature Genetics.

[74]  L S Illis,et al.  Neurotrauma , 1998, Spinal Cord.

[75]  S. Berkovic,et al.  A potassium channel mutation in neonatal human epilepsy. , 1998, Science.

[76]  J. McNamara,et al.  Glutamate Receptor GluR3 Antibodies and Death of Cortical Cells , 1998, Neuron.

[77]  S. Shinnar Prolonged febrile seizures and mesial temporal sclerosis , 1998, Annals of neurology.

[78]  C. Marsden,et al.  Autosomal dominant nocturnal frontal-lobe epilepsy: genetic heterogeneity and evidence for a second locus at 15q24. , 1998, American journal of human genetics.

[79]  Mark Leppert,et al.  A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns , 1998, Nature Genetics.

[80]  J. Cavazos,et al.  Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions , 1998, Annals of neurology.

[81]  D. Bertrand,et al.  Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy , 1998, British journal of pharmacology.

[82]  William B Dobyns,et al.  Mutations in filamin 1 Prevent Migration of Cerebral Cortical Neurons in Human Periventricular Heterotopia , 1998, Neuron.

[83]  Robin J. Leach,et al.  A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family , 1998, Nature Genetics.

[84]  J. McNamara,et al.  Immunoglobulin G and complement immunoreactivity in the cerebral cortex of patients with Rasmussen’s encephalitis , 1999, Neurology.

[85]  I. Scheffer,et al.  Generalized epilepsy with febrile seizures plus: A common childhood‐onset genetic epilepsy syndrome , 1999, Annals of neurology.

[86]  J. McNamara,et al.  Seizure disorders in mutant mice: Relevance to human epilepsies , 1999, Current Opinion in Neurobiology.

[87]  P. Schwartzkroin,et al.  Kainic acid‐induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats , 2000, Hippocampus.

[88]  D. D. B. Degeneration and Regeneration of the Nervous System , .