Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator

[1]  B. Hwang,et al.  Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries , 2021, Nature Communications.

[2]  Jianchao Sun,et al.  Superior Sodium Metal Anodes Enabled by Sodiophilic Carbonized Coconut Framework with 3D Tubular Structure , 2020, Advanced Energy Materials.

[3]  Yan Yu,et al.  A Low‐Temperature Sodium‐Ion Full Battery: Superb Kinetics and Cycling Stability , 2020, Advanced Functional Materials.

[4]  L. Mai,et al.  Methanol-derived high-performance Na3V2(PO4)3/C: from kilogram-scale synthesis to pouch cell safety detection. , 2020, Nanoscale.

[5]  Baohua Li,et al.  Sodiophilically Graded Gold Coating on Carbon Skeletons for Highly Stable Sodium Metal Anodes. , 2020, Small.

[6]  Yan Yu,et al.  3D Flexible, Conductive and Recyclable Ti3C2TX MXene-Melamine Foam for High Areal Capacity and Long Lifetime Alkali-Metal Anode. , 2020, ACS nano.

[7]  Huan Wang,et al.  Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. , 2020, Chemical Society reviews.

[8]  Zhian Zhang,et al.  Full Activation of Mn4+ /Mn3+ Redox in Na4 MnCr(PO4 )3 as a High-Voltage and High-Rate Cathode Material for Sodium-Ion Batteries. , 2020, Small.

[9]  S. Dou,et al.  Core-Shell C@Sb Nanoparticles as a Nucleation Layer for High-Performance Sodium Metal Anodes. , 2020, Nano letters.

[10]  Junhua Song,et al.  Stable Sodium Metal Batteries via Manipulation of Electrolyte Solvation Structure , 2020 .

[11]  Yongsong Luo,et al.  Dendrite-free lithium metal and sodium metal batteries , 2020 .

[12]  Yan Yu,et al.  Development and challenge of advanced nonaqueous sodium ion batteries , 2020 .

[13]  Xizheng Liu,et al.  A thermodynamically stable quasi-liquid interface for dendrite-free sodium metal anodes , 2020 .

[14]  X. Qin,et al.  Quasi-Solid-State Dual-Ion Sodium Metal Batteries for Low-Cost Energy Storage , 2020, Chem.

[15]  Xiaomin Wang,et al.  Three dimensional frameworks of super ionic conductor for thermodynamically and dynamically favorable sodium metal anode , 2020 .

[16]  Zhongmin Liu,et al.  Two-Dimensional Mesoporous Polypyrrole-Graphene Oxide Heterostructure as Dual-Functional Ion Redistributor for Dendrite-free Lithium Metal Anodes. , 2020, Angewandte Chemie.

[17]  Yunpeng Jiang,et al.  Sodiophilic Decoration of a Three-Dimensional Conductive Scaffold toward a Stable Na Metal Anode , 2020 .

[18]  Yunhui Huang,et al.  Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes , 2020 .

[19]  Huan Wang,et al.  Enabling high-performance sodium metal anodes via A sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres , 2020 .

[20]  Yan Yu,et al.  Toward High Energy Density All Solid‐State Sodium Batteries with Excellent Flexibility , 2020, Advanced Energy Materials.

[21]  Lunhua He,et al.  A Novel NASICON‐Type Na4MnCr(PO4)3 Demonstrating the Energy Density Record of Phosphate Cathodes for Sodium‐Ion Batteries , 2020, Advanced materials.

[22]  Yan Yu,et al.  A High-Temperature Na-Ion Battery: Boosting the Rate Capability and Cycle Life by Structure Engineering. , 2020, Small.

[23]  S. Dou,et al.  Dendrite-free sodium metal anodes enabled by sodium benzenedithiolate-rich protection layer. , 2020, Angewandte Chemie.

[24]  Bin Zhu,et al.  A nano-shield design for separators to resist dendrites of lithium metal battery. , 2020, Angewandte Chemie.

[25]  Hyunhyub Ko,et al.  Co-solvent induced piezoelectric γ-phase nylon-11 separator for sodium metal battery , 2020 .

[26]  Alexandria R. C. Bredar,et al.  Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications , 2020, ACS Applied Energy Materials.

[27]  B. Wei,et al.  Normalization Li growth from nucleation stage for dendrite-free Li metal anodes. , 2019, Angewandte Chemie.

[28]  Jian Yang,et al.  Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes , 2019 .

[29]  Haodong Shi,et al.  Conducting and Lithiophilic MXene/Graphene Frameworks for High-Capacity, Dendrite-Free Lithium-Metal Anodes. , 2019, ACS nano.

[30]  Huisheng Peng,et al.  Sodiophilic interphase mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries. , 2019, Angewandte Chemie.

[31]  Feng Wu,et al.  Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode , 2019, Energy Storage Materials.

[32]  S. Dou,et al.  Understanding a New NASICON-Type High Voltage Cathode Material for High-Power Sodium-Ion Batteries. , 2019, Angewandte Chemie.

[33]  Bing Sun,et al.  Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High‐Energy Batteries , 2019, Advanced materials.

[34]  B. Wei,et al.  Normalized Lithium Growth from the Nucleation Stage for Dendrite‐Free Lithium Metal Anodes , 2019, Angewandte Chemie.

[35]  Weihua Chen,et al.  Developments and Perspectives on Emerging High-Energy-Density Sodium-Metal Batteries , 2019, Chem.

[36]  Yaping Zhang,et al.  Sustainability-inspired cell design for a fully recyclable sodium ion battery , 2019, Nature Communications.

[37]  Eunsu Paek,et al.  Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. , 2019, Chemical reviews.

[38]  Yan Yu,et al.  High-Safety Nonaqueous Electrolytes and Interphases for Sodium-Ion Batteries. , 2019, Small.

[39]  Dingcai Wu,et al.  Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes , 2019, Nature Communications.

[40]  Wenwen Tu,et al.  A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye , 2019, Chemical Engineering Journal.

[41]  Yan Yu,et al.  Na3V2(PO4)3: an advanced cathode for sodium-ion batteries. , 2019, Nanoscale.

[42]  Ping Liu,et al.  Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries. , 2019, Chemical communications.

[43]  Wenwu Wang,et al.  Pristine or Highly Defective? Understanding the Role of Graphene Structure for Stable Lithium Metal Plating , 2018, Advanced Energy Materials.

[44]  X. Tao,et al.  Pillared MXene with Ultralarge Interlayer Spacing as a Stable Matrix for High Performance Sodium Metal Anodes , 2018, Advanced Functional Materials.

[45]  Long-Qing Chen,et al.  Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects , 2018, Nature Energy.

[46]  P. Kim,et al.  High Performance Lithium Metal Batteries Enabled by Surface Tailoring of Polypropylene Separator with a Polydopamine/Graphene Layer , 2018, Advanced Energy Materials.

[47]  Xifei Li,et al.  Recent advances in effective protection of sodium metal anode , 2018, Nano Energy.

[48]  Rui Zhang,et al.  An ion redistributor for dendrite-free lithium metal anodes , 2018, Science Advances.

[49]  Jiayan Luo,et al.  2D Materials for Lithium/Sodium Metal Anodes , 2018, Advanced Energy Materials.

[50]  Yang Zhao,et al.  Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries , 2018 .

[51]  Hao Zhang,et al.  Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode , 2018, Nature Communications.

[52]  Seung Woo Lee,et al.  In Situ Polymerization of Dopamine on Graphene Framework for Charge Storage Applications. , 2018, Small.

[53]  Bing Sun,et al.  Dendrite‐Free Sodium‐Metal Anodes for High‐Energy Sodium‐Metal Batteries , 2018, Advanced materials.

[54]  Huan Wang,et al.  A Chemically Engineered Porous Copper Matrix with Cylindrical Core–Shell Skeleton as a Stable Host for Metallic Sodium Anodes , 2018, Advanced Functional Materials.

[55]  Xingguo Qi,et al.  3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes , 2018 .

[56]  Hyun‐Wook Lee,et al.  Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(fluorosulfonyl)imide Enables High-Performance Sodium Metal Electrodes. , 2018, ACS applied materials & interfaces.

[57]  Hui Xu,et al.  Developing High‐Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress , 2018, Advanced materials.

[58]  Fernando A. Soto,et al.  Synergistic Effect of Graphene Oxide for Impeding the Dendritic Plating of Li , 2018 .

[59]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[60]  Mingjun Cui,et al.  Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating , 2018 .

[61]  Jinwen Qin,et al.  Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries , 2018 .

[62]  Yan Yu,et al.  Challenges and Perspectives for NASICON‐Type Electrode Materials for Advanced Sodium‐Ion Batteries , 2017, Advanced materials.

[63]  Huan Wang,et al.  Critical Role of Ultrathin Graphene Films with Tunable Thickness in Enabling Highly Stable Sodium Metal Anodes. , 2017, Nano letters.

[64]  Yonggang Yao,et al.  Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode , 2017, Advanced materials.

[65]  Quan-hong Yang,et al.  Processable and Moldable Sodium-Metal Anodes. , 2017, Angewandte Chemie.

[66]  Jong‐Chan Lee,et al.  2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries , 2017 .

[67]  Quan-hong Yang,et al.  Porous Al Current Collector for Dendrite-Free Na Metal Anodes. , 2017, Nano letters.

[68]  Yan Yu,et al.  Na3V2(PO4)3 coated by N-doped carbon from ionic liquid as cathode materials for high rate and long-life Na-ion batteries. , 2017, Nanoscale.

[69]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[70]  Boyang Liu,et al.  Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. , 2017, Nano letters.

[71]  Jianchao Sun,et al.  Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes , 2017, Science Advances.

[72]  Adam P. Cohn,et al.  Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. , 2017, Nano letters.

[73]  Yongwon Lee,et al.  Ultraconcentrated Sodium Bis(fluorosulfonyl)imide-Based Electrolytes for High-Performance Sodium Metal Batteries. , 2017, ACS applied materials & interfaces.

[74]  S. Jang,et al.  Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries , 2017 .

[75]  Yutao Li,et al.  Rechargeable Sodium All-Solid-State Battery , 2017, ACS central science.

[76]  Dingchang Lin,et al.  Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. , 2016, Journal of the American Chemical Society.

[77]  Di Bao,et al.  A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[78]  S. Choudhury,et al.  A stable room-temperature sodium–sulfur battery , 2016, Nature Communications.

[79]  Jun Liu,et al.  Mesoporous materials for energy conversion and storage devices , 2016 .

[80]  Lin Gu,et al.  Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium‐Ion Batteries , 2014 .

[81]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[82]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[83]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[84]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[85]  Andreas Hirsch,et al.  Visualization of defect densities in reduced graphene oxide , 2012 .

[86]  Cinzia Casiraghi,et al.  Probing the nature of defects in graphene by Raman spectroscopy. , 2012, Nano letters.

[87]  Myung-Hyun Ryou,et al.  Excellent Cycle Life of Lithium‐Metal Anodes in Lithium‐Ion Batteries with Mussel‐Inspired Polydopamine‐Coated Separators , 2012 .

[88]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[89]  Jung-Ki Park,et al.  Mussel‐Inspired Polydopamine‐Treated Polyethylene Separators for High‐Power Li‐Ion Batteries , 2011, Advanced materials.

[90]  A. Krasheninnikov,et al.  Structural defects in graphene. , 2011, ACS nano.

[91]  R. Ruoff,et al.  Reduced graphene oxide by chemical graphitization. , 2010, Nature communications.

[92]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[93]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[94]  Wenhui Wang,et al.  Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode , 2020 .

[95]  H. Woodrow,et al.  : A Review of the , 2018 .

[96]  W. Luo,et al.  Ultrathin Surface Coating Enables the Stable Sodium Metal Anode , 2017 .

[97]  B. Steen,et al.  Non-aqueous electrolytes for sodium-ion batteries , 2015 .

[98]  Christopher J. Tassone,et al.  FROM SYNTHESIS TO PROPERTIES AND APPLICATIONS , 2013 .

[99]  R. Ruoff,et al.  The chemistry of graphene oxide. , 2010, Chemical Society reviews.

[100]  E. P. Lewis In perspective. , 1972, Nursing outlook.