Localization and comparison of two free-form surfaces

Abstract Comparison of two free-form surfaces based on discrete data points is of paramount importance for reverse engineering. It can be used to assess the accuracy of the reconstructed surfaces and to quantify the difference between two such surfaces. The entire process involves three main steps: data acquisition, 3D feature localization and quantitative comparison. This paper presents models and algorithms for 3D feature localization and quantitative comparison. Complex free-form surfaces are represented by bicubic parametric spline surfaces using discrete points. A simple yet effective pseudoinverse algorithm was developed and implemented for localization. It consists of two iterative operations, namely, constructing a pseudo transformation matrix and point matching. A computing algorithm was developed to compare two such surfaces using optimization techniques. Since this approach does not involve solving non-linear equations for the parameters of positions and orientations, it is fast and robust. The algorithm was implemented and tested with several examples. It is effective and can be used in industry for sculptured surface comparison.