Superresolution border segmentation and measurement in remote sensing images

Segmentation and measurement of linear characteristics in remote sensing imagery are among the first stages in several geomorphologic studies, including the length estimation of geographic features such as perimeters, coastal lines, and borders. However, unlike area measurement algorithms, widely used methods for perimeter estimation in digital images have high systematic errors. No precision improvement can be achieved with finer spatial resolution images because of the inherent geometrical inaccuracies they commit. In this work, a superresolution border segmentation and measurement algorithm is presented. The method is based on minimum distance segmentation over the initial image, followed by contour tracking using a superresolution enhancement of the marching squares algorithm. Thorough testing with synthetic and validated field images shows that this algorithm outperforms traditional border measuring methods, regardless of the image resolution or the orientation, size, and shape of the object to be analyzed.

[1]  Herbert Freeman,et al.  On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..

[2]  J. Campbell Introduction to remote sensing , 1987 .

[3]  Feipeng Da,et al.  Sub-pixel edge detection based on an improved moment , 2010, Image Vis. Comput..

[4]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[5]  Zenon Kulpa More about areas and perimeters of quantized objects , 1983, Comput. Vis. Graph. Image Process..

[6]  Jeffrey S. Kargel,et al.  Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project , 2007, Comput. Geosci..

[7]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[8]  Fritz Albregtsen,et al.  Mva'94 Iapr Workshop on Machine Vision Applications Methods to Estimate Areas and Perimeters of Blob-like Objects: a Comparison , 2022 .

[9]  Irina Rish,et al.  An empirical study of the naive Bayes classifier , 2001 .

[10]  Joakim Lindblad,et al.  A graph-based framework for sub-pixel image segmentation , 2011, Theor. Comput. Sci..

[11]  S. Farestam Sub-pixel Distance Maps and Weighted Distance Transforms , 1994 .

[12]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[13]  S. L. Kravtsov,et al.  Processing of remote sensing data for detection and recognition of object classes , 2004 .

[14]  Yohanna Peter,et al.  APPLICATION OF REMOTE SENSING , 2022 .

[15]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[16]  Arnold W. M. Smeulders,et al.  Vector code probability and metrication error in the representation of straight lines of finite length , 1982, Comput. Graph. Image Process..

[17]  Stephen B. Gray,et al.  Local Properties of Binary Images in Two Dimensions , 1971, IEEE Transactions on Computers.

[18]  Thomas J. Watson,et al.  An empirical study of the naive Bayes classifier , 2001 .

[19]  Zenon Kulpa,et al.  Area and perimeter measurement of blobs in discrete binary pictures , 1977 .

[20]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[21]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[22]  B. Bhatta Remote Sensing and GIS , 2008 .

[23]  Aggelos K. Katsaggelos,et al.  An optimal polygonal boundary encoding scheme in the rate distortion sense , 1998, IEEE Trans. Image Process..

[24]  Erik Borg,et al.  Processing of remote sensing data , 2003 .

[25]  A G Fabbri,et al.  The application of remote sensing to Canadian petroleum exploration: promising and yet unexploited , 1985 .

[26]  John R. Jensen Introductory Digital Image Processing , 2004 .