Sequential Exploration of Complex Surfaces Using Minimum Energy Designs

A new space-filling design, called minimum energy design (MED), is proposed to explore unknown regions of the design space of particular interest to an experimenter. The key ideas involved in constructing the MED are the visualization of each design point as a charged particle inside a box, and minimization of the total potential energy of these particles. It is shown through theoretical arguments and simulations that with a proper choice of the charge function, the MED can asymptotically generate any arbitrary probability density function. A version of the MED, which adaptively updates the design by “learning” about the unknown response surface sequentially, is proposed and implemented. Two potential applications of MED in simulation of complex probability densities and optimization of complex response surfaces are discussed and demonstrated with examples. This article has supplementary material online.

[1]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[2]  Yang Xiang,et al.  Generalized Simulated Annealing for Global Optimization: The GenSA Package , 2013, R J..

[3]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[4]  Agus Sudjianto,et al.  Blind Kriging: A New Method for Developing Metamodels , 2008 .

[5]  D. Cox Note on Grouping , 1957 .

[6]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[7]  Shu‐Ang Zhou Electrodynamics of Solids and Microwave Superconductivity , 1999 .

[8]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[9]  V. Roshan Joseph A Note on Nonnegative DoIt Approximation , 2013, Technometrics.

[10]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[11]  山本 渉,et al.  Principal Points の部分空間性について , 2000 .

[12]  Holger Dette,et al.  Generalized Latin Hypercube Design for Computer Experiments , 2010, Technometrics.

[13]  Tirthankar Dasgupta,et al.  Statistical Modeling and Analysis for Robust Synthesis of Nanostructures , 2008 .

[14]  S. Bates,et al.  Formulation of the Audze--Eglais uniform Latin hypercube design of experiments , 2003 .

[15]  Arnold J. Stromberg,et al.  Number-theoretic Methods in Statistics , 1996 .

[16]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[17]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[18]  Raja K. Herlekar The problem of optimum stratification , 1967 .

[19]  Peter Z. G. Qian,et al.  Accurate emulators for large-scale computer experiments , 2011, 1203.2433.

[20]  Shie-Yui Liong,et al.  Efficient MCMC Schemes for Computationally Expensive Posterior Distributions , 2011, Technometrics.

[21]  V. Roshan Joseph,et al.  Bayesian Computation Using Design of Experiments-Based Interpolation Technique , 2012, Technometrics.

[22]  Peter Goos,et al.  An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs , 2009 .

[23]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[24]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[25]  Stanley H. Cohen,et al.  Design and Analysis , 2010 .

[26]  Ran Jin,et al.  Sequential measurement strategy for wafer geometric profile estimation , 2012 .

[27]  V. Roshan Joseph,et al.  Limit Kriging , 2006, Technometrics.

[28]  Wei Chen,et al.  An Efficient Algorithm for Constructing Optimal Design of Computer Experiments , 2005, DAC 2003.