Antiproliferative Homoisoflavonoids and Bufatrienolides from Urginea depressa.

Investigation of the South African plant Urginea depressa Baker (Asparagaceae Juss.) for antiproliferative activity against the A2780 ovarian cancer cell line led to the isolation of the six new homoisoflavonoids urgineanins A-F (1-6), the two known bufatrienolides 7 and 9, and the new bufatrienolides urginins B and C (8 and 10). Structures were elucidated based on analysis of their 1D and 2D NMR spectra, electronic circular dichroism, and mass spectrometric data. Five of the six new homoisoflavonoids had good antiproliferative activity against the A2780 ovarian cancer, A2058 melanoma, and H522-T1 human non-small-cell lung cancer cells, and urgineanin A (1) had submicromolar activity against all three cell lines. The four bufatrienolides 7-10 had strong antiproliferative activity against the same cell line, with IC50 values of 24.1, 11.2, 111, and 40.6 nM, respectively.

[1]  B. Min,et al.  Phenolic compounds from Caesalpinia sappan heartwood and their anti-inflammatory activity. , 2012, Journal of natural products.

[2]  Yuchan Chen,et al.  Homoisoflavonoids from the medicinal plant Portulaca oleracea. , 2012, Phytochemistry.

[3]  V. Rasamison,et al.  Antiproliferative acetogenins from a Uvaria sp. from the Madagascar dry forest. , 2012, Journal of natural products.

[4]  David J Newman,et al.  Natural products as sources of new drugs over the 30 years from 1981 to 2010. , 2012, Journal of natural products.

[5]  K. D. Toit,et al.  Anti-inflammatory and antimicrobial profiles of Scilla nervosa (Burch.) Jessop (Hyacinthaceae) , 2011 .

[6]  Zhimin Wang,et al.  Bufadienolides and their antitumor activity. , 2011, Natural product reports.

[7]  V. Rasamison,et al.  Cardenolides of Leptadenia madagascariensis from the Madagascar dry forest. , 2011, Bioorganic & medicinal chemistry.

[8]  A. Michalik,et al.  Steviamine, a new indolizidine alkaloid from Stevia Rebaudiana , 2010 .

[9]  Hai-bin Qu,et al.  Three New Homoisoflavanones from the Ophiopogon japonicusKer-Gawler (Liliaceae) , 2010 .

[10]  M. Salmón,et al.  Homoisoflavanones from Agave tequilana Weber , 2010, Molecules.

[11]  T. Walle Methylation of Dietary Flavones Increases Their Metabolic Stability and Chemopreventive Effects , 2009, International journal of molecular sciences.

[12]  M. Chase,et al.  A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae , 2009 .

[13]  G. Morini,et al.  Taste‐Active Compounds in a Traditional Italian Food: ‘Lampascioni’ , 2008, Chemistry & biodiversity.

[14]  T. Walle Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption. , 2007, Molecular pharmaceutics.

[15]  D. Mulholland,et al.  Bufadienolides from Drimia macrocentra and Urginea riparia (Hyacinthaceae: Urgineoideae). , 2007, Phytochemistry.

[16]  D. Mulholland,et al.  Bufadienolides from the southern African Drimia depressa (Hyacinthaceae: Urgineoideae). , 2007, Phytochemistry.

[17]  D. Mulholland,et al.  3-Benzyl-4-chromanones (homoisoflavanones) from bulbs of the ethnomedicinal geophyte Ledebouria revoluta (Hyacinthaceae) , 2006 .

[18]  D. Mulholland,et al.  Bufadienolides from bulbs of Urginea lydenburgensis (Hyacinthaceae: Urgineoideae). , 2006, Phytochemistry.

[19]  N. Koorbanally,et al.  Coincident isolation of a novel homoisoflavonoid from Resnova humifusa and Eucomis montana (Hyacinthoideae: Hyacinthaceae) , 2006 .

[20]  D. Mulholland,et al.  Eudesmane-type sesquiterpenoids from Urginea epigea (Urgineoideae; Hyacinthaceae) , 2005 .

[21]  N. de Tommasi,et al.  Cytotoxic saponins from Schefflera rotundifolia. , 2004, Planta medica.

[22]  M. Ye,et al.  Novel cytotoxic bufadienolides derived from bufalin by microbial hydroxylation and their structure–activity relationships , 2004, The Journal of Steroid Biochemistry and Molecular Biology.

[23]  M. Iizuka,et al.  Bufadienolides and a new lignan from the bulbs of Urginea maritima. , 2001, Chemical & pharmaceutical bulletin.

[24]  T. Pohl,et al.  Drimia robustaおよびUrginea altissima(ヒアシンス)のブファジエノリド , 2001 .

[25]  M. Inoue,et al.  Structure-cytotoxic activity relationship for the toad poison bufadienolides. , 1998, Bioorganic & medicinal chemistry.

[26]  P. Steyn,et al.  Bufadienolides of plant and animal origin. , 1998, Natural product reports.

[27]  S. Numazawa,et al.  Involvement of Na+, K+‐ATPase inhibition in K562 cell differentiation induced by bufalin , 1994, Journal of cellular physiology.

[28]  M. Adinolfi,et al.  Absolute configuration of homoisoflavanones from muscari species , 1988 .

[29]  S. M. Kupchan,et al.  Isolation and Characterization of Cardiotonic Steroids from the Bulb of Urginea altissima BAKER , 1979 .

[30]  R. J. Hemingway,et al.  Tumor inhibitors. LXV. Bersenogenin, berscillogenin, and 3-epiberscillogenin, three new cytotoxic bufadienolides from Bersama abyssinica. , 1971, The Journal of organic chemistry.

[31]  C. Tamm,et al.  The homo-isoflavones, a new class of natural product. Isolation and structure of eucomin and eucomol. , 1967 .

[32]  A. V. Wartburg,et al.  ALTOSID, EIN HERZAKTIVES GLYKOSID AUS URGINEA ALTISSIMA BAKER1 , 1959 .

[33]  O. Schindler,et al.  Teilsynthese von hellebrigenin‐β‐D‐glucosid‐〈1,5〉 und Hellebrigenol‐β‐D‐glucosid‐〈1,5〉, sowie Nachweis dieser zwei Glykoside in den Zwiebeln von Urginea depressa Baker. Glykoside und Aglykone, 202. Mitteilung , 1959 .