Low-complexity hybrid form FIR filters using matrix multiple constant multiplication
暂无分享,去创建一个
O. Gustafsson | J. O. Coleman | O. Gustafsson | A. Dempster | M. Macleod | J.O. Coleman | A.G. Dempster | M.D. Macleod
[1] Y. Lim,et al. Discrete coefficient FIR digital filter design based upon an LMS criteria , 1983 .
[2] A. Dempster,et al. Use of minimum-adder multiplier blocks in FIR digital filters , 1995 .
[3] Miodrag Potkonjak,et al. Multiple constant multiplications: efficient and versatile framework and algorithms for exploring common subexpression elimination , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[4] Chein-Wei Jen,et al. A new hardware-efficient architecture for programmable FIR filters , 1996 .
[5] R. Hartley. Subexpression sharing in filters using canonic signed digit multipliers , 1996 .
[6] K. Azadet,et al. Low-power equalizer architectures for high speed modems , 1998 .
[7] Patrick Schaumont,et al. A new algorithm for elimination of common subexpressions , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[8] Zhan Yu,et al. Design of optimal hybrid form FIR filter , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).
[9] O. Gustafsson,et al. A novel approach to multiple constant multiplication using minimum spanning trees , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..
[10] Kaushik Roy,et al. A graph theoretic approach for synthesizing very low-complexityhigh-speed digital filters , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[11] Andrew G. Dempster,et al. Power analysis of multiplier blocks , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).
[12] L. Wanhammar,et al. Design of high-speed multiplierless filters using a nonrecursive signed common subexpression algorithm , 2002 .
[13] J. O. Coleman. A double binary-tree FIR-filter form and the corresponding low-sensitivity IIR bandpass/bandstop structure , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..
[14] Andrew G. Dempster,et al. Towards an Algorithm for Matrix Multiplier Blocks , 2003 .
[15] Nicolas Boullis,et al. Some optimizations of hardware multiplication by constant matrices , 2003, Proceedings 2003 16th IEEE Symposium on Computer Arithmetic.
[16] Liang-Gee Chen,et al. Power-efficient FIR filter architecture design for wireless embedded system , 2004, IEEE Trans. Circuits Syst. II Express Briefs.
[17] A. Dempster,et al. Common subexpression elimination algorithm for low-cost multiplierless implementation of matrix multipliers , 2004 .
[18] O. Gustafsson,et al. Implementation of low complexity FIR filters using a minimum spanning tree , 2004, Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521).
[19] Chip-Hong Chang,et al. Efficient algorithms for common subexpression elimination in digital filter design , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[20] O. Gustafsson,et al. On the use of multiple constant multiplication in polyphase FIR filters and filter banks , 2004, Proceedings of the 6th Nordic Signal Processing Symposium, 2004. NORSIG 2004..
[21] O. Gustafsson,et al. Low-complexity constant coefficient matrix multiplication using a minimum spanning tree approach , 2004, Proceedings of the 6th Nordic Signal Processing Symposium, 2004. NORSIG 2004..