Evaluation and Optimization of the Robustness of DAG Schedules in Heterogeneous Environments

A schedule is said to be robust if it is able to absorb some degree of uncertainty in task or communication durations while maintaining a stable solution. This intuitive notion of robustness has led to a lot of different metrics and almost no heuristics. In this paper, we perform an experimental study of these different metrics and show how they are correlated to each other. Additionally, we propose different strategies for minimizing the makespan while maximizing the robustness: from an evolutionary metaheuristic (best solutions but longer computation time) to more simple heuristics making approximations (medium quality solutions but fast computation time). We compare these different approaches experimentally and show that we are able to find different approximations of the Pareto front for this bicriteria problem.

[1]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[2]  Rolf H. Möhring,et al.  A Computational Study on Bounding the Makespan Distribution in Stochastic Project Networks , 2001, Ann. Oper. Res..

[3]  C. E. Clark The Greatest of a Finite Set of Random Variables , 1961 .

[4]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[5]  Stefan Felsner,et al.  The Linear Extension Diameter of a Poset , 1999, SIAM J. Discret. Math..

[6]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[7]  Howard Jay Siegel,et al.  Representing Task and Machine Heterogeneities for Heterogeneous Computing Systems , 2000 .

[8]  Peter R. Wurman Optimal Factory Scheduling Using Stochastic Dominance A* , 1996, AAAI/IAAI, Vol. 2.

[9]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[10]  Hironori Kasahara,et al.  A standard task graph set for fair evaluation of multiprocessor scheduling algorithms , 2002 .

[11]  Rizos Sakellariou,et al.  A hybrid heuristic for DAG scheduling on heterogeneous systems , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[12]  John M. Burt,et al.  Conditional Monte Carlo: A Simulation Technique for Stochastic Network Analysis , 1971 .

[13]  Van Slyke,et al.  MONTE CARLO METHODS AND THE PERT PROBLEM , 1963 .

[14]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[15]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[16]  Richard M. Van Slyke,et al.  Letter to the Editor---Monte Carlo Methods and the PERT Problem , 1963 .

[17]  Erik G. Learned-Miller,et al.  A Probabilistic Upper Bound on Differential Entropy , 2005, IEEE Transactions on Information Theory.

[18]  Jane W.-S. Liu,et al.  Bounds on Scheduling Algorithms for Heterogeneous Comnputing Systems , 1974, IFIP Congress.

[19]  SiegelHoward Jay,et al.  Task Matching and Scheduling in Heterogeneous Computing Environments Using a Genetic-Algorithm-Based Approach , 1997 .

[20]  Didier Dubois,et al.  Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge , 2003, Eur. J. Oper. Res..

[21]  Willy Herroelen,et al.  Project scheduling under uncertainty: Survey and research potentials , 2005, Eur. J. Oper. Res..

[22]  Jane N. Hagstrom,et al.  Computational complexity of PERT problems , 1988, Networks.

[23]  J. Christopher Beck,et al.  Slack-based Techniques for Robust Schedules , 2014 .

[24]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[25]  Willy Herroelen,et al.  Robust and reactive project scheduling: a review and classification of procedures , 2004 .

[26]  Soonhoi Ha,et al.  A Static Scheduling Heuristic for Heterogeneous Processors , 1996, Euro-Par, Vol. II.

[27]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[28]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..

[29]  Bajis M. Dodin,et al.  Bounding the Project Completion Time Distribution in PERT Networks , 1985, Oper. Res..

[30]  Salim Hariri,et al.  Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous Computing , 2002, IEEE Trans. Parallel Distributed Syst..

[31]  Edward A. Lee,et al.  A Compile-Time Scheduling Heuristic for Interconnection-Constrained Heterogeneous Processor Architectures , 1993, IEEE Trans. Parallel Distributed Syst..

[32]  R. L. Daniels,et al.  β-Robust scheduling for single-machine systems with uncertain processing times , 1997 .

[33]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[34]  Emmanuel Jeannot,et al.  Precise Evaluation of the Efficiency and the Robustness of Stochastic DAG Schedules , 2009 .

[35]  Stephen P. Boyd,et al.  A heuristic for optimizing stochastic activity networks with applications to statistical digital circuit sizing , 2007 .

[36]  Emmanuel Jeannot,et al.  Robust task scheduling in non-deterministic heterogeneous computing systems , 2006, 2006 IEEE International Conference on Cluster Computing.

[37]  Ladislau Bölöni,et al.  Robust scheduling of metaprograms , 2002 .

[38]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[39]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[40]  Tao Yang,et al.  A Comparison of Clustering Heuristics for Scheduling Directed Acycle Graphs on Multiprocessors , 1992, J. Parallel Distributed Comput..

[41]  Alain Girault,et al.  A bi-criteria scheduling heuristic for distributed embedded systems under reliability and real-time constraints , 2004, International Conference on Dependable Systems and Networks, 2004.

[42]  Jon B. Weissman,et al.  A new metric for robustness with application to job scheduling , 2005, HPDC-14. Proceedings. 14th IEEE International Symposium on High Performance Distributed Computing, 2005..

[43]  Hesham H. Ali,et al.  Task scheduling in parallel and distributed systems , 1994, Prentice Hall series in innovative technology.

[44]  Yan Alexander Li,et al.  Estimating the execution time distribution for a task graph in a heterogeneous computing system , 1997, Proceedings Sixth Heterogeneous Computing Workshop (HCW'97).

[45]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[46]  Günter Rudolph,et al.  Convergence of evolutionary algorithms in general search spaces , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[47]  Anthony A. Maciejewski,et al.  A Stochastic Approach to Measuring the Robustness of Resource Allocations in Distributed Systems , 2006, 2006 International Conference on Parallel Processing (ICPP'06).

[48]  Howard Jay Siegel,et al.  A dynamic matching and scheduling algorithm for heterogeneous computing systems , 1998, Proceedings Seventh Heterogeneous Computing Workshop (HCW'98).