FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions
暂无分享,去创建一个
[1] V. A. Smirnov,et al. Hepp and Speer sectors within modern strategies of sector decomposition , 2008, 0812.4700.
[2] A. Smirnov,et al. Master integrals for four-loop massless propagators up to weight twelve , 2011, 1108.0732.
[3] Gudrun Heinrich,et al. Sector Decomposition , 2008, 0803.4177.
[4] Charalampos Anastasiou,et al. Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically , 2007 .
[5] J. B. Tausk. Non-planar massless two-loop Feynman diagrams with four on-shell legs , 1999 .
[6] Gudrun Heinrich,et al. SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..
[7] V. Smirnov. Problems of the strategy of regions , 1999, hep-ph/9907471.
[8] Thomas Hahn. Cuba - a library for multidimensional numerical integration , 2007, Comput. Phys. Commun..
[9] Takahiro Ueda,et al. A geometric method of sector decomposition , 2009, Comput. Phys. Commun..
[10] S. Borowka,et al. SecDec: A tool for numerical mult i-loop/leg calculations , 2012, 1206.4908.
[11] V. Smirnov. Analytic Tools for Feynman Integrals , 2013 .
[12] F. Tkachov,et al. Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .
[13] R. N. Lee,et al. Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D , 2009, 0911.0252.
[14] D. Soper. Techniques for QCD calculations by numerical integration , 1999, hep-ph/9910292.
[15] V. A. Smirnov. Analytical result for dimensionally regularized massless on shell double box , 1999 .
[16] T. Binoth,et al. An automatized algorithm to compute infrared divergent multi-loop integrals , 2000 .
[17] Roman N. Lee,et al. The dimensional recurrence and analyticity method for multicomponent master integrals: using unitarity cuts to construct homogeneous solutions , 2012, 1209.0339.
[18] Volker Pilipp,et al. Semi-numerical power expansion of Feynman integrals , 2008, 0808.2555.
[19] T.Kaneko,et al. Numerical Contour Integration for Loop Integrals , 2005 .
[20] A. V. Smirnov,et al. FIESTA 2: Parallelizeable multiloop numerical calculations , 2009, Comput. Phys. Commun..
[21] Gudrun Heinrich,et al. Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0 , 2012, Comput. Phys. Commun..
[22] S. Borowka,et al. Numerical evaluation of massive multi-loop integrals with SecDec , 2012, 1209.6345.
[23] Gudrun Heinrich,et al. Massive non-planar two-loop four-point integrals with SecDec 2.1 , 2013, Comput. Phys. Commun..
[24] T. Binoth,et al. Numerical evaluation of multi-loop integrals by sector decomposition , 2004 .
[25] D. Soper,et al. Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.
[26] S. Borowka,et al. Numerical multi-loop calculations with SecDec , 2013, 1309.3492.
[27] Jeffrey S. Vetter,et al. Contemporary High Performance Computing - From Petascale toward Exascale , 2019, Chapman and Hall / CRC computational science series.
[28] V. A. Smirnov,et al. Analytic results for massless three-loop form factors , 2010, 1001.2887.
[29] Christian Bogner,et al. Operating system: Unix , 1983 .
[30] C. Schubert,et al. An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .
[31] A. Smirnov,et al. Expansion by regions: revealing potential and Glauber regions automatically , 2012, 1206.0546.
[32] Alexander V. Tikhonravov,et al. "Lomonosov": Supercomputing at Moscow State University , 2013, HiPC 2013.
[33] A. V. Smirnov,et al. Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..
[34] T. Binoth,et al. Numerical evaluation of phase space integrals by sector decomposition , 2004 .
[35] M. Beneke,et al. Asymptotic expansion of Feynman integrals near threshold , 1997, hep-ph/9711391.
[36] A. Smirnov,et al. Evaluating single-scale and/or non-planar diagrams by differential equations , 2013, 1312.2588.
[37] Christian Bogner,et al. Blowing up Feynman integrals , 2008, 0806.4307.
[38] A. Pak,et al. Geometric approach to asymptotic expansion of Feynman integrals , 2010, 1011.4863.