Nearly radial Neumann eigenfunctions on symmetric domains

We study the existence of Neumann eigenfunctions which do not change sign on the boundary of some special domains. We show that eigenfunctions which are strictly positive on the boundary exist on regular polygons with at least 5 sides, while on equilateral triangles and cubes it is not even possible to find an eigenfunction which is nonnegative on the boundary. We use analytic methods combined with symmetry arguments to prove the result for polygons with six or more sides. The case for the regular pentagon is harder. We develop a validated numerical method to prove this case, which involves iteratively bounding eigenvalues for a sequence of subdomains of the triangle. We use a learning algorithm to find and optimize this sequence of subdomains, making it straightforward to check our computations with standard software.

[1]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[2]  Variational Methods in Mathematical Physics: A Unified Approach , 1992 .

[3]  Carlos A. Berenstein,et al.  An overdetermined Neumann problem in the unit disk , 1982 .

[4]  B. Siudeja,et al.  Hot spots conjecture for a class of acute triangles , 2015 .

[5]  Anders Logg Automated solution of differential equations , 2007 .

[6]  B. Siudeja On mixed Dirichlet-Neumann eigenvalues of triangles , 2015, 1501.07618.

[7]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[8]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[9]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[10]  Siegfried M. Rump,et al.  Guaranteed inclusions for the complex generalized eigenproblem , 1989, Computing.

[11]  R. Laugesen,et al.  Minimizing Neumann fundamental tones of triangles: An optimal Poincaré inequality , 2009, 0907.1552.

[12]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[13]  Spilling from a cognac glass , 2013, 1311.7296.

[14]  Jian Deng Some Results on the Schiffer's Conjecture in R^2 , 2011 .

[15]  A planar convex domain with many isolated “ hot spots” on the boundary , 2013 .

[16]  R. Atar,et al.  On Neumann eigenfunctions in lip domains , 2004 .

[17]  Richard S. Laugesen,et al.  Spectral Theory of Partial Differential Equations - Lecture Notes , 2012, 1203.2344.

[18]  Thomas Hoffmann-Ostenhof Eigenfunctions for 2-Dimensional Tori and for Rectangles with Neumann Boundary Conditions , 2015 .

[19]  Howard A. Levine,et al.  Inequalities between dirichlet and Neumann eigenvalues , 1986 .

[20]  Robin J. Wilson EVERY PLANAR MAP IS FOUR COLORABLE , 1991 .

[21]  Carlos A. Berenstein,et al.  An inverse spectral theorem and its relation to the Pompeiu problem , 1980 .

[22]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[23]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .