The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum

[1]  Yuxian Xia,et al.  The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum , 2012, BMC Microbiology.

[2]  Gary D. Lock,et al.  Application of infrared thermography to the study of behavioural fever in the desert locust , 2011 .

[3]  Yuxian Xia,et al.  Mapmi gene contributes to stress tolerance and virulence of the entomopathogenic fungus, Metarhizium acridum. , 2011, Journal of invertebrate pathology.

[4]  Yuxian Xia,et al.  The mechanism of the mycoinsecticide diluent on the efficacy of the oil formulation of insecticidal fungus , 2011, BioControl.

[5]  Guo-Ping Zhao,et al.  Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum , 2011, PLoS genetics.

[6]  Yuxian Xia,et al.  Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum , 2011, BMC Microbiology.

[7]  Yuxian Xia,et al.  Mmc, a gene involved in microcycle conidiation of the entomopathogenic fungus Metarhizium anisopliae. , 2010, Journal of invertebrate pathology.

[8]  N. Naqvi,et al.  PdeH, a High-Affinity cAMP Phosphodiesterase, Is a Key Regulator of Asexual and Pathogenic Differentiation in Magnaporthe oryzae , 2010, PLoS pathogens.

[9]  G. Kohut,et al.  Adenylyl cyclase regulates heavy metal sensitivity, bikaverin production and plant tissue colonization in Fusarium proliferatum , 2010, Journal of basic microbiology.

[10]  Yuxian Xia,et al.  Identification of genes differentially expressed in vivo by Metarhizium anisopliae in the hemolymph of Locusta migratoria using suppression-subtractive hybridization , 2009, Current Genetics.

[11]  R. S. St. Leger,et al.  Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. , 2009, Fungal genetics and biology : FG & B.

[12]  Yuxian Xia,et al.  Construction and analysis of a normalized cDNA library from Metarhizium anisopliae var. acridum germinating and differentiating on Locusta migratoria wings. , 2009, FEMS microbiology letters.

[13]  D. Zeng,et al.  Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China , 2008 .

[14]  Chengshu Wang,et al.  MOS1 Osmosensor of Metarhizium anisopliae Is Required for Adaptation to Insect Host Hemolymph , 2007, Eukaryotic Cell.

[15]  H. Arst,et al.  Evidence for the Direct Involvement of the Proteasome in the Proteolytic Processing of the Aspergillus nidulans Zinc Finger Transcription Factor PacC* , 2007, Journal of Biological Chemistry.

[16]  Pari Skamnioti,et al.  Magnaporthe grisea Cutinase2 Mediates Appressorium Differentiation and Host Penetration and Is Required for Full Virulence[W][OA] , 2007, The Plant Cell Online.

[17]  J. Rollins,et al.  Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. , 2007, Fungal genetics and biology : FG & B.

[18]  D. Siderovski,et al.  Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism , 2007, The EMBO journal.

[19]  Yuxian Xia,et al.  Role of hunchback in segment patterning of Locusta migratoria manilensis revealed by parental RNAi , 2006, Development, growth & differentiation.

[20]  S. Flint,et al.  Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates. , 2004, Journal of invertebrate pathology.

[21]  A. Martinez-Espinoza,et al.  MAP Kinase and cAMP Signaling Pathways Modulate the pH-Induced Yeast-to-Mycelium Dimorphic Transition in the Corn Smut Fungus Ustilago maydis , 2004, Current Microbiology.

[22]  Xingyong Yang,et al.  Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. , 2004, Journal of invertebrate pathology.

[23]  C. D'souza,et al.  Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. , 2003, Annual review of phytopathology.

[24]  Brian Williamson,et al.  The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. , 2002, Molecular plant pathology.

[25]  S. Flint,et al.  Effect of UV-B on conidia and germlings of the entomopathogenic hyphomycete Metarhizium anisopliae , 2001 .

[26]  F. Fontanesi,et al.  Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1 , 2001, Molecular Genetics and Genomics.

[27]  R. Dean,et al.  The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. , 1997, The Plant cell.

[28]  Daniel L Johnson,et al.  Effects of Temperature and Thermoregulation on Mycosis byBeauveria bassianain Grasshoppers , 1996 .

[29]  R. S. St. Leger,et al.  Construction of an improved mycoinsecticide overexpressing a toxic protease. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Daniel L Johnson,et al.  Effects of Temperature and Thermoregulation on Mycosis by Beauveria bassiana in Grasshoppers , 1996 .

[31]  S. Gold,et al.  cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. , 1994, Genes & development.

[32]  N. Magan,et al.  Effects of KCl concentration on accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi , 1994 .

[33]  R. Leger,et al.  The Role of Cuticle-Degrading Enzymes in Fungal Pathogenesis in Insects , 1991 .

[34]  P. Broda,et al.  Rapid preparation of DNA from filamentous fungi , 1985 .