Optimizing Quantization for Lasso Recovery

This letter is focused on quantized compressed sensing, assuming that Lasso is used for signal estimation. Leveraging recent work, we propose a constrained Lloyd–Max-like framework to optimize the quantization function in this setting, and show that when the number of observations is high, this method of quantization gives a significantly better recovery rate than standard Lloyd–Max quantization. We support our theoretical analysis with numerical simulations.

[1]  Vivek K Goyal,et al.  Quantization for Compressed Sensing Reconstruction , 2009 .

[2]  Allen Gersho,et al.  Scalar Quantization I: Structure and Performance , 1992 .

[3]  Rayan Saab,et al.  Sobolev Duals for Random Frames and ΣΔ Quantization of Compressed Sensing Measurements , 2013, Found. Comput. Math..

[4]  Olgica Milenkovic,et al.  Distortion-rate functions for quantized compressive sensing , 2009, 2009 IEEE Information Theory Workshop on Networking and Information Theory.

[5]  Rayan Saab,et al.  Sobolev Duals for Random Frames and Sigma-Delta Quantization of Compressed Sensing Measurements , 2010, ArXiv.

[6]  Laurent Jacques,et al.  Consistent Basis Pursuit for Signal and Matrix Estimates in Quantized Compressed Sensing , 2015, IEEE Signal Processing Letters.

[7]  Richard G. Baraniuk,et al.  Exponential Decay of Reconstruction Error From Binary Measurements of Sparse Signals , 2014, IEEE Transactions on Information Theory.

[8]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[9]  V.K. Goyal,et al.  Compressive Sampling and Lossy Compression , 2008, IEEE Signal Processing Magazine.

[10]  Richard G. Baraniuk,et al.  1-Bit compressive sensing , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[11]  Martin Vetterli,et al.  Reduction of the MSE in R-times oversampled A/D conversion O(1/R) to O(1/R2) , 1994, IEEE Trans. Signal Process..

[12]  Yaniv Plan,et al.  The Generalized Lasso With Non-Linear Observations , 2015, IEEE Transactions on Information Theory.

[13]  Laurent Jacques,et al.  Stabilizing Nonuniformly Quantized Compressed Sensing With Scalar Companders , 2012, IEEE Transactions on Information Theory.

[14]  E. Candès,et al.  Encoding the ` p Ball from Limited Measurements , 2006 .

[15]  Olgica Milenkovic,et al.  Quantized Compressive Sensing , 2009, 0901.0749.

[16]  Rayan Saab,et al.  One-Bit Compressive Sensing With Norm Estimation , 2014, IEEE Transactions on Information Theory.

[17]  Laurent Jacques,et al.  Dequantizing Compressed Sensing: When Oversampling and Non-Gaussian Constraints Combine , 2009, IEEE Transactions on Information Theory.

[18]  Laurent Jacques,et al.  Quantization and Compressive Sensing , 2014, ArXiv.

[19]  Sundeep Rangan,et al.  Message-Passing De-Quantization With Applications to Compressed Sensing , 2012, IEEE Transactions on Signal Processing.

[20]  Deanna Needell,et al.  Methods for quantized compressed sensing , 2015, 2016 Information Theory and Applications Workshop (ITA).

[21]  Stephen P. Boyd,et al.  Compressed Sensing With Quantized Measurements , 2010, IEEE Signal Processing Letters.

[22]  Vivek K. Goyal,et al.  Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.

[23]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[24]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[25]  Christos Thrampoulidis,et al.  LASSO with Non-linear Measurements is Equivalent to One With Linear Measurements , 2015, NIPS.

[26]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[27]  Sundeep Rangan,et al.  Optimal quantization for compressive sensing under message passing reconstruction , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[28]  Richard G. Baraniuk,et al.  Quantization of Sparse Representations , 2007, 2007 Data Compression Conference (DCC'07).

[29]  Vivek K. Goyal,et al.  Distributed Scalar Quantization for Computing: High-Resolution Analysis and Extensions , 2008, IEEE Transactions on Information Theory.

[30]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[31]  Ruby J Pai Nonadaptive lossy encoding of sparse signals , 2006 .

[32]  Vivek K. Goyal,et al.  Frame permutation quantization , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).