Predicting ${X}$ -Sensitivity of Circuit-Inputs on Test-Coverage: A Machine-Learning Approach

Digital circuits are often prone to suffer from uncertain timing, inadequate sensor feedback, limited controllability of past states or inability of initializing memory-banks, and erroneous behavior of analog-to-digital converters, which may produce an unknown (<inline-formula> <tex-math notation="LaTeX">${X}$ </tex-math></inline-formula>) logic value at various circuit nodes. Additionally, many design bugs that are identified during the post-silicon validation phase manifest themselves as <inline-formula> <tex-math notation="LaTeX">${X}$ </tex-math></inline-formula>-values. The presence of such <inline-formula> <tex-math notation="LaTeX">${X}$ </tex-math></inline-formula>-sources on certain primary or secondary inputs of a logic circuit may cause loss of fault-coverage of a test set, which, in turn, may impact its reliability and robustness. In this paper, we provide a mechanism for predicting the sensitivity of <inline-formula> <tex-math notation="LaTeX">${X}$ </tex-math></inline-formula>-sources in terms of loss of fault-coverage, on the basis of learning only a few structural features of the circuit that are easy to extract from the netlist. We show that the <inline-formula> <tex-math notation="LaTeX">${X}$ </tex-math></inline-formula>-sources can be graded satisfactorily according to their sensitivity using support vector regression, thereby obviating the need for costly explicit simulation. Experimental results on several benchmark circuits demonstrate the efficacy, speed, and accuracy of prediction.

[1]  Nur A. Touba,et al.  $X$-Canceling MISR Architectures for Output Response Compaction With Unknown Values , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  Bernd Becker,et al.  Accurate CEGAR-based ATPG in presence of unknown values for large industrial designs , 2016, 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[3]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[4]  Sudhakar M. Reddy,et al.  Convolutional compaction of test responses , 2003, International Test Conference, 2003. Proceedings. ITC 2003..

[5]  Katherine Shu-Min Li,et al.  Exploiting distribution of unknown values in test responses to optimize test output compactors , 2019, Integr..

[6]  Ronald Fagin,et al.  Comparing top k lists , 2003, SODA '03.

[7]  Timothy Marler,et al.  Neural network for regression problems with reduced training sets , 2017, Neural Networks.

[8]  Janak H. Patel,et al.  Accurate logic simulation in the presence of unknowns , 1989, 1989 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers.

[9]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[10]  Farzan Fallah,et al.  Quick detection of difficult bugs for effective post-silicon validation , 2012, DAC Design Automation Conference 2012.

[11]  Yao-Wen Chang,et al.  Functional ECO using metal-configurable gate-array spare cells , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[12]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[13]  H. Altun,et al.  Treatment of multi-dimensional data to enhance neural network estimators in regression problems , 2006 .

[14]  Kuen-Jong Lee,et al.  Test Response Compaction via Output Bit Selection , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[15]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .

[16]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[17]  Vishwani D. Agrawal,et al.  AN EXACT ANALYSIS FOR EFFICIENT COMPUTATION OF RANDOM-PATTERN TESTABILITY IN COMBINATIONAL CIRCUITS , 1986 .

[18]  Jacob A. Abraham,et al.  COMPLEXITY OF ACCURATE LOGIC SIMULATION. , 1987 .

[19]  Xiaoqing Wen,et al.  VLSI Test Principles and Architectures: Design for Testability (Systems on Silicon) , 2006 .

[20]  David Bryan,et al.  Combinational profiles of sequential benchmark circuits , 1989, IEEE International Symposium on Circuits and Systems,.

[21]  Elizabeth A. Peck,et al.  Introduction to Linear Regression Analysis , 2001 .

[22]  Bernd Becker,et al.  Exact Logic and Fault Simulation in Presence of Unknowns , 2014, TODE.

[23]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[24]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[25]  Bernd Becker,et al.  Accurate QBF-based test pattern generation in presence of unknown values , 2013, DATE 2013.

[26]  Irith Pomeranz Unknown Output Values of Faulty Circuits and Output Response Compaction , 2014, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[27]  S. Fukumoto,et al.  Expansion of Convolutional Compactors over Galois Field , 2006, 2006 15th Asian Test Symposium.

[28]  Giovanni Squillero,et al.  RT-Level ITC'99 Benchmarks and First ATPG Results , 2000, IEEE Des. Test Comput..

[29]  Krishnendu Chakrabarty,et al.  Counter-Based Output Selection for Test Response Compaction , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[30]  Bernd Becker,et al.  X-masking during logic BIST and its impact on defect coverage , 2006, IEEE Trans. Very Large Scale Integr. Syst..

[31]  Janusz Rajski,et al.  Synthesis of X-tolerant convolutional compactors , 2005, 23rd IEEE VLSI Test Symposium (VTS'05).

[32]  Xiang Dong,et al.  Probabilistic models for estimation of random and pseudo-random test length , 2008, Journal of Computer Science and Technology.

[33]  Irith Pomeranz,et al.  On output response compression in the presence of unknown output values , 2002, DAC '02.

[34]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[35]  Igor L. Markov,et al.  Reap what you sow: spare cells for post-silicon metal fix , 2008, ISPD '08.

[36]  S.M. Reddy,et al.  Enhanced 3-valued logic/fault simulation for full scan circuits using implicit logic values , 2004, Proceedings. Ninth IEEE European Test Symposium, 2004. ETS 2004..

[37]  Subhasish Mitra,et al.  X-compact: an efficient response compaction technique for test cost reduction , 2002, Proceedings. International Test Conference.

[38]  Peter Wohl,et al.  Increasing Scan Compression by Using X-chains , 2008, 2008 IEEE International Test Conference.

[39]  A. B. Kahn,et al.  Topological sorting of large networks , 1962, CACM.

[40]  Wen-Ben Jone,et al.  A configurable bus-tracer for error reproduction in post-silicon validation , 2013, 2013 International Symposium onVLSI Design, Automation, and Test (VLSI-DAT).

[41]  S. Chatterjee,et al.  Regression Analysis by Example , 1979 .

[42]  L. H. Goldstein,et al.  SCOAP: Sandia Controllability/Observability Analysis Program , 1988, 17th Design Automation Conference.

[43]  Jammalamadaka Introduction to Linear Regression Analysis (3rd ed.) , 2003 .